American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
American Journal of Pharmacological Sciences. 2013, 1(3), 38-41
DOI: 10.12691/ajps-1-3-2
Open AccessArticle

A New Spectrophotometric Method for the Determination of Eflornithine Hydrochloride in Parenteral Formulation

Amit Kumar1, Vijender Singh2 and Praveen Kumar3,

1Department of Pharmaceutical analysis, NKBR College of Pharmacy & Research Centre, Meerut, India

2Department of Pharmaceutical analysis, BBS Institute of Pharmaceutical & Allied Sciences, Greater Noida, India

3Department of Pharmaceutical Chemistry, S. D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India

Pub. Date: April 14, 2013

Cite this paper:
Amit Kumar, Vijender Singh and Praveen Kumar. A New Spectrophotometric Method for the Determination of Eflornithine Hydrochloride in Parenteral Formulation. American Journal of Pharmacological Sciences. 2013; 1(3):38-41. doi: 10.12691/ajps-1-3-2


This work describes the development, validation and stable studies of a new, simple and reliable UV spectroscopy procedure for the analysis of eflornithine hydrochloride. A new rapid, precise, accurate, specific and simple UV Spectrophotometric analytical method was validated to assay eflornithine hydrochloride (DFMO) in parenteral. Measurements were taken at λmax 283 using ethanol as the solvent. Beer’s law is obeyed in the concentration ranges 4 – 32µg mL-1 with a correlation coefficient (r) equal to 1. The values of limit of detection (LOD) were 0.0675µg mL-1 and limit of quantification (LOQ) were 0.2045µg mL-1 for DFMO respectively. The value of molar absorptivity and sandell’s sensitivity was 0.3918 × 104L mol-1 cm-1 and 0.1633µg cm-2 respectively. The developed method was validated as per International Conference of Harmonization guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. The accuracy of the method was 100.23%. The precision demonstrated a relative standard deviation of less than 1%. The results were satisfactory when compared with the literature. The proposed method might be applied in routine quality control in the pharmaceutical industries since it is precise, accurate, simple and economic. Commercial formulation and laboratory prepared mixtures were successfully analyzed using the developed methods.

Eflornithine Hydrochloride UV–Spectrophotometric pharmaceutical preparation validation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Clarkson, A. B. Jr., Bacchi, C. J., Mellow, G. H., Nathan, H. C., McCann, P. P. and Sjoerdsma, A, “Efficacy of combinations of difluoromethylornithine and bleomycin in a mouse model of central nervous system African trypanosomiasis,” Proc. Natl. Acad. Sci., 80(18). 5729-5733. Sep. 1983.
[2]  Available: [1999].
[3]  Available: [May 12, 2008].
[4]  Balfour, J. A. and McClellan, K, “Topical eflornithine,” Am. J. Clin. Dermatol, 2(3). 197-201. 2001.
[5]  Goldberg, B., Rattendi, D., Yarlett, N., Lloyd, D. and Bacchi, C. J, “Effects of carboxylmethylation and polyamine synthesis inhibitors on methylation of Trypanosoma brucei cellular proteins and lipids,” J. Eukaryot. Microbiol., 44. 352-8. 1997.
[6]  Pepin, J., Guern, C., Milord, F. and Schechter, P. J, Difluoromethylornithine for arseno-resistant trypanosoma brucei gambiense sleeping sickness,” The Lancet, 330. 1431-1433. 1987.
[7]  Merali, S. and Clarkson, A. B. Jr, “Polyamine content of Pneumocystis carinii and response to the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine,” Antimicrob. Agents Chemother., 40. 973-978. 1996.
[8]  Available: Term=eflornithine&Search_Button=Submit. [April 18, 1986].
[9]  Milord, F., Loko, L., Ethier, L., Mpia, B. and Pépin, J, “Eflornithine concentrations in serum and cerebrospinal fluid of 63 patients treated for Trypanosoma brucei gambiense sleeping sickness,” Trans. R. Soc. Trop. Med. Hyg., 87(4). 473-7. Jul-Aug. 1993.
[10]  Cohen, J. L., Ko, R. J., Lo, A. T., Shields, M. D. and Gilman, T. M, “High-pressure liquid chromatographic analysis of eflornithine in serum,” J. Pharm. Sci., 78(2). 114-6. Feb. 1989.
[11]  Huebert, N. D., Schwartz, J. J. and Haegele, K. D, “Analysis of 2-difluoromethyl-DL-ornithine in human plasma, cerebrospinal fluid and urine by cation-exchange high-performance liquid chromatography,” J. Chromatogr. A., 762(1-2). 293-8. Feb. 1997.
[12]  Saravanan, C., Kumudhavalli, M. V., Kumar, M. and Jayakar, B, “ A new validated RP-HPLC method for estimation of eflornithine hydrochloride in tablet dosage form,” J. Phar. Res., 2. 1730-1731. 2009.
[13]  Kilkenny, M. L., Slavik, M., Christopher, M. R. and Stobaugh, J. F, “Plasma analysis of alpha-difluoromethylornithine using pre-column derivatization with naphthalene-2,3-dicarboxaldehyde/CN and multidimensional chromatography,” J. Pharm. Biomed. Anal., 17. 1205-1213. 1998.
[14]  Jansson-Löfmark, R., Römsing, S., Albers, E. and Ashton, M, “Determination of eflornithine enantiomers in plasma by precolumn derivatization with o-phthalaldehyde-N-acetyl-l-cysteine and liquid chromatography with UV detection,” Biomed. Chromatogr., 24(7). 768-773. July 2010.
[15]  15. Malm, M. and Bergqvist, Y, “Determination of eflornithine enantiomers in plasma, by solid-phase extraction and liquid chromatography with evaporative light-scattering detection,” J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 846. 98-104. 2007.
[16]  Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Kumar, P, “Spectrophotometric determination of eflornithine hydrochloride as active pharmaceutical ingredient using sodium 1,2-naphthoquinone-4-sulfonate as the derivative chromogenic reagent,” Trade Sci Inc., 7, 2008.
[17]  Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Singh, A. K, “Estimation of eflornithine hydrochloride by UV spectroscopy,” Trade Sci. Inc., 8. 2009.
[18]  Validation of Analytical Procedures, Methodology ICH Harmonised Tripartite Guideline, Having Reached Step 4 of the ICH Process at the ICH Steering Committee meeting on November 6, 1996.