American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: http://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2014, 2(2), 37-41
DOI: 10.12691/ajps-2-2-2
Open AccessArticle

Designing, Proposed Synthesis and Docking Analysis of Novel Sulfonamide Derivatives as Antimicrobial Agents

Ajeet1, and Arvind Kumar1

1Department of Pharmaceutical Chemistry and Drug Design, S. D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India

Pub. Date: April 03, 2014

Cite this paper:
Ajeet and Arvind Kumar. Designing, Proposed Synthesis and Docking Analysis of Novel Sulfonamide Derivatives as Antimicrobial Agents. American Journal of Pharmacological Sciences. 2014; 2(2):37-41. doi: 10.12691/ajps-2-2-2

Abstract

Substituted N-acetyl-4-amino-benzenesulfonamide derivatives were designed using ChemDraw Ultra 7.0 and energy minimization of derivatives was achieved with Chem3D Pro of ChemOffice suit, keeping in view the structural requirements of pharmacophore. Their proposed synthesis along with in-silico study (docking analysis) in favor of antimicrobial activity has been shown in this work with the possible mechanism of reaction. Docking studies were carried out to study the binding properties of drugs with molecular targets with the help of AutoDock Vina (Python-Prescription 0.8). Titled compounds (CS, DPS, SRS and TS) exhibited good binding properties with molecular target pseudomonas aeruginosa exotoxin A in Lamarckian genetic algorithm based flexible docking studies.

Keywords:
sulfonamide derivatives proposed synthesis antimicrobial molecular docking

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Jones M.E., Blosser-Middleton R.S., Thornsberry C., Karlowsky J.A., Sahm D.F., “The activity of levofloxacin and other antimicrobials against clinical isolates of Streptococcus pneumoniae collected worldwide during 1999-2002”, Diagn. Microbiol. Infect. Dis., 47, 579-586, 2003.
 
[2]  Fouda S.I., Kadry A.A., Shibl A.M., (2004) “Beta-lactam and macrolide resistance and serotype distribution among Streptococcus pneumoniae isolates from Saudi Arabia”, J. Chemother., 16, 517-523, 2004.
 
[3]  Jenkins S.G., Farrell D.J., Patel M., Lavin B.S., “Trends in anti-bacterial resistance among Streptococcus pneumonia isolated in the USA, 2000-2003: PROTEK US years 1-3”, J. Infect., 51, 355-363, 2005.
 
[4]  Krcméry V., Sefton A., “Vancomycin resistance in Gram-positive bacteria other than Enterococcus spp.”, Int. J. Antimicrob. Agents., 14, 99-105, 2000.
 
[5]  Kaye K.S., Engemann J.J., Fraimow H.S., Abrutyn E., “Pathogens resistant to antimicrobial agents:epidemiology, molecular mechanisms, and clinical management”, Infect. Dis. Clin. North. Am., 18, 467-511, 2004.
 
[6]  Cuellar-Rodríguez J., et. al. “Vancomycin-resistant enterococci, México City”, Emerg. Infect. Dis., 13, 798-799, 2007.
 
[7]  Murthy A., De Angelis G., Pittet D., Schrenzel J., Uckay I., Harbarth S., “Cost-effectiveness of universal MRSA screening on admission to surgery”, Clin. Microbiol. Infect., 16, 1747-1753, 2010.
 
[8]  Thakur A., Thakur M., Supuran, Khadikar P.V., “QSAR study on inhibition of E. Coli by sulfonamides”, ARKIVOC, xiv, 593-598, 2006.
 
[9]  Hong Y.L., Hossler P.A., Calhoun D.H., Meshnick S.R. “Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs”, Antimicrob. Agents. Chemother., 39, 1756-1763, 1995.
 
[10]  Furniss B.S., Hannaford A.J., Smith P.W.G., Tatchell A.R., Vogel’s Textook of Practical Organic Chemistry; Prentice Hall, New York, 1989.
 
[11]  Naama H., Meir B., Bogdan W., Richard H.F., Boris Y., “Syntheses and evaluation of anticonvulsant profile and teratogenicity of novel amide derivatives of branched aliphatic carboxylic acids with 4-aminobenzensulfonamide”, J. Med. Chem., 53, 4177-4186, 2010.
 
[12]  Ajeet, “Chlorambucil derivatives as antineoplastic agent: in-silico designing and docking”, Int. J. Cur. Pharm. Res., 3(4), 81-84, 2011.
 
[13]  Ajeet, “Trans-disciplinary receptor binding of acyclovir to human phenylalanine hydroxylase: docking approach”, Int. J. Pharm. Pharm. Sci., 4(suppl 3), 182-184, 2012.
 
[14]  Ajeet, “In-silico designing and characterization of Amiloride derivatives as ion channel modulator”, Med. Chem. Res., 22(2), 1004-1010, 2013.
 
[15]  Ajeet, Kumar P., Tripathi L., “Virtual Screening Tool Based Designing and Evaluation of Novel Sulfonamide Derivatives as Anticonvulsant Agent – A Pharmacophoric Approach”, Int. J. Pharm. Phytopharmacol. Res., 2(3), 202-208, 2012.
 
[16]  Ajeet, Tripathi L., Kumar P., “Designing of Novel 6(H)-1,3,4-Thiadiazine Derivatives as MMP12 Inhibitors: A MLR and Docking Approach”, American Journal of Pharmacological Sciences,1(2), 29-34, 2013.
 
[17]  Ajeet, Kumar A., “Designing of Hybrid form of Benzothiazole-quinazoline as GABA-A Inhibitor with Anticonvulsant Profile: An in-silico Approach”, American Journal of Pharmacological Sciences, 1(6), 116-120, 2013.