[1] | Hageman JR. The Coronavirus Disease 2019 (COVID-19). Pediatr Ann 2020; 49: e99-100. |
|
[2] | Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020. |
|
[3] | Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020:727-33. |
|
[4] | Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020; 395: 470-3. |
|
[5] | Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 3099: 19-20. |
|
[6] | Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14: 72-3. |
|
[7] | Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res 2020; 177: 104762. |
|
[8] | Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020: 3-7. |
|
[9] | Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020: 105949. |
|
[10] | Luzzi GA, Peto TEA. Adverse Effects of Antimalarials: An Update. Drug Saf 1993; 8: 295-311. |
|
[11] | Thomé R, Lopes SCP, Costa FTM, Verinaud L. Chloroquine: Modes of action of an undervalued drug. Immunol Lett 2013; 153: 50-7. |
|
[12] | Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2: 1-10. |
|
[13] | Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents 2020: 105938. |
|
[14] | Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6: 67-9. |
|
[15] | Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46: 586-90. |
|
[16] | Shoichet BK. Virtual screening of chemical libraries. Nature 2004; 432: 862-5. |
|
[17] | Patrick Walters W, Stahl MT, Murcko MA. Virtual screening - An overview. Drug Discov Today 1998; 3: 160-78. |
|
[18] | Zoete V, Daina A, Bovigny C, Michielin O. Swiss Similarity: A Web Tool for Low to Ultra High Throughput Ligand-Based Virtual Screening. J Chem Inf Model 2016; 56: 1399-404. |
|
[19] | Irwin JJ, Shoichet BK. ZINC - A free database of commercially available compounds for virtual screening. J Chem Inf Model 2005; 45: 177-82. |
|
[20] | Sterling T, Irwin JJ. ZINC 15 - Ligand Discovery for Everyone. J Chem Inf Model 2015; 55: 2324-37. |
|
[21] | Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4. |
|
[22] | Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, et al. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J Struct Biol 2012; 179: 269-78. |
|
[23] | Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7: 1-13. |
|
[24] | Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 2018; 46: W257-63. |
|
[25] | Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol 2004; 1: 337-41. |
|
[26] | Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45: 2615-23. |
|
[27] | Leung KKK, Shilton BH. Chloroquine binding reveals flavin redox switch function of quinone reductase 2. J Biol Chem 2013; 288: 11242-51. |
|
[28] | Faber MS, Jetter A, Fuhr U. Assessment of CYP1A2 activity in clinical practice: Why, how, and when? Basic Clin Pharmacol Toxicol 2005; 97: 125-34. |
|
[29] | Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 2005; 5: 6-13. |
|
[30] | Kenworthy KE, Bloomer JC, Clarke SE, Houston JB. CYP3A4 drug interactions: Correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 1999; 48: 716-27. |
|
[31] | Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology 2000; 61: 174-83. |
|
[32] | Rettie AE, Jones JP. CLINICAL AND TOXICOLOGICAL RELEVANCE OF CYP2C9: Drug-Drug Interactions and Pharmacogenetics. Annu Rev Pharmacol Toxicol 2005; 45: 477-94. |
|
[33] | Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020. |
|
[34] | Wang T, Du Z, Zhu F, Cao Z, An Y, Gao Y, et al. Comorbidities and multi-organ injuries in the treatment of COVID-19. Lancet 2020; 395: e52. |
|