American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: http://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2013, 1(5), 100-103
DOI: 10.12691/ajps-1-5-6
Open AccessReview Article

Role of Matrix Metalloproteinases (MMPs) and MMP Inhibitors on Intracranial Aneurysms (A Review Article)

Azam Maradni1, Seyed Hasan Emamirazavi1, Abbas Noruzi-javidan1, Seyed Hamzeh Mousavi2 and Alireza Khoshnevisan3,

1Brain and spinal injury repair research center (BASIR). Tehran University of medical sciences, Tehran, Iran

2Department of general Surgery, Rasoul akram hospital,Tehran University of medical sciences, Tehran, Iran

3Brain and spinal injury repair research center (BASIR), Department of neurosurgery, Tehran University of Medical Sciences, Tehran, Iran

Pub. Date: December 16, 2013

Cite this paper:
Azam Maradni, Seyed Hasan Emamirazavi, Abbas Noruzi-javidan, Seyed Hamzeh Mousavi and Alireza Khoshnevisan. Role of Matrix Metalloproteinases (MMPs) and MMP Inhibitors on Intracranial Aneurysms (A Review Article). American Journal of Pharmacological Sciences. 2013; 1(5):100-103. doi: 10.12691/ajps-1-5-6

Abstract

Cerebrovascular disease is one of the leading causes of death in the world, and about one-fourth of cerebrovascular deaths are due to ruptured cerebral aneurysms (CA). Accordingly it is important to find a way to reduce aneurysm formation and its subsequent morbidity and mortality. Proteolytic activity capable of lysing gelatin has been shown to be increased in aneurysm tissue and expression of plasmin, membrane-type matrix metalloproteinase-1(MT1-MMP), and matrix metalloproteinase-2 (MMP-2) in aneurysmal wall is more than what we observe in normal cerebral arteries. This activity may induce focal degradation of the vascular extracellular matrix and may contribute to aneurysm formation and growth. MMPs are important in tissue remodeling associated with various physiological and pathological processes such as morphogenesis, angiogenesis, apoptosis and tissue repair. in this paper we review the role of MMPs in aneurysm formation.

Keywords:
cerebral aneurysm MMPs MMP inhibitors doxycycline statins

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Stehbens, W.E., “Etiology of intracranial berry aneurysms,” J Neurosurg, 70. 823-31. 1989.
 
[2]  Hashimoto, T., Meng, H., Young, W., “Intracranial aneurysms links among inflammation, hemodynamics and vascular remodeling,” Neurol 28. 372-80. 2006.
 
[3]  Stehbens,WE., “Analysis of definitions and word misusage in vascular pathology,” Cardiovascular Pathology 10(5). 251-7. 2001.
 
[4]  Winn, HR., Jane, J.A., Taylor, J., Kaiser, D., Britz, GW., “Prevalence of asymptomatic incidental aneurysms.review of 4568 arteriograms,” Journal of neurosurgery 96(1).43-9. 2002.
 
[5]  McCormick, WF., Nofzinger, JD., “Saccular intracranial aneurysms: an autopsy study”, Journal of neurosurgery 22. 155. 1965.
 
[6]  Griffiths, P., Worthy, S., Gholkar, A., “Incidental intracranial vascular pathology in patients investigated for carotid stenosis,” Neuroradiology 38(1). 25-30. 1996.
 
[7]  Rinkel, GJE., Djibuti, M., Algra, A., Van Gijn, J., “Prevalence and risk of rupture of intracranial aneurysms: a systematic review,” Stroke29(1). 251-6. 1998.
 
[8]  Olson, J., Vongpunsawad, S., Kuivaniemi, H., Ronkainen, A., Hernesniemi, J., Ryynänen, M., et al, “Search for intracranial aneurysm susceptibility gene (s) using Finnish families, BMC, medical genetics 3(1). 7. 2002.
 
[9]  Ostergaard, JR., Hog, E., “Incidence of multiple intracranial aneurysms,” Journal of neurosurgery 63(1). 49-55. 1985.
 
[10]  Westerlaan, HE., van Dijk, J., Jansen-van der Weide, MC., de Groot, JC., et al. “Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis—systematic review and meta-analysis,” Radiology 258(1). 134-45. 2011.
 
[11]  Picard, L., Bracard, S., Anxionnat, R., “Interventional neuroradiology. Current status--future prospects,” Bulletin de l'Académie nationale de medicine 193(4). 873-81. 2009.
 
[12]  Turowski, B., Zanella, FE., “Interventional neuroradiology of the head and neck, “Neuroimaging Clinics of North America 13(3). 619. 2003.
 
[13]  Chen, L., “Detection of ischemia in endovascular therapy of cerebral aneurysms: A perspective in the era of neurophysiological monitoring,Asian Journal of Neurosurgery 5(1). 60. 2010.
 
[14]  Reinacher, PC., Stracke, P., Reinges, M.H.T., Hans, F.J., Krings, T., “Contrast-enhanced time-resolved 3-D MRA: applications in neurosurgery and interventional neuroradiology, “ Neuroradiology 49. 3-13. 2007.
 
[15]  Stracke, C., Spuentrup, E., Reinacher, P., Thron, A., Krings, T., “Time resolved 3D MRA. Applications for interventional neuroradiology,” Interventional Neuroradiology 12(3). 223. 2006.
 
[16]  Khoshnevisan, A., Sistany Allahabadi, N., “Neuronavigation: Principles, Clinical Applications and Potential Pitfalls.” Iranian Journal of Psychiatry 7(2). 97-103. 2012.
 
[17]  Zhang, B., Dhillon, S., Geary, I., Howell, WM., Iannotti, F., Day, I.N.M., et al. “Polymorphisms in matrix metalloproteinase-1,-3,-9, and-12 genes in relation to subarachnoid hemorrhage.” Stroke 32(9). 2198-202. 2001.
 
[18]  Puente, XS., Sánchez, LM., Overall, CM., López-Otín, C., “Human and mouse proteases: a comparative genomic approach, “ Nature Reviews Genetics4(7). 544-58. 2003.
 
[19]  Biljana, E., Boris, V., Cena, D., Veleska-Stefkovska. D., “Matrix metalloproteinases (with accent to collagenases),” Journal of Cell and Animal Biology5(7). 113-20. 2011.
 
[20]  Khoshnevisan, A., “An overview of therapeutic approaches to brain tumor stem cells,” Medical Journal of the slamic Republic of Iran 26(1). 31-40. 2012.
 
[21]  Vecil, GG., Larsen, PH., Corley, SM., Herx, LM., Besson, A., Goodyer, CG., et al, “Interleukin‐1 is a key regulator of matrix metalloproteinase‐9 expression in human neurons in culture and following mouse brain trauma in vivo,” Journal of neuroscience research 61(2). 212-24. 2000.
 
[22]  Clements, JM., Cossins, J., Wells, G., Corkill, DJ., Helfrich, K., Wood, LM., et al, “Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor inhibitor.” Journal of neuroimmunology74 (1). 85-94. 1997.
 
[23]  Bruno, G., Todor, R., Lewis, I., Chyatte, D., “Vascular extracellular matrix remodeling in cerebral aneurysms,” Journal of neurosurgery 89(3). 431-40. 1998.
 
[24]  Vu, TH., Shipley, JM., Bergers, G., Berger, JE., Helms, JA., Hanahan, D., et al, “MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes,” Cell 93(3). 411-22. 1998.
 
[25]  Kim, SC., Singh, M., Huang, J., Prestigiacomo, CJ.. Winfree, CJ., Solomon, RA., et al, “Matrix metalloproteinase-9 in cerebral aneurysms,” Neurosurgery 41(3). 642. 1997.
 
[26]  Thompson, R., Holmes, D., Mertens, R., Liao, S., Botney, M., Mecham, R., et al, “Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms, An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages,” Journal of Clinical Investigation 96(1). 318. 1995.
 
[27]  Chyatte, D., Lewis, I., “Gelatinase activity and the occurrence of cerebral aneurysms,” Stroke 28(4). 799-804. 1997.
 
[28]  Huret, JL., Dessen, P., Bernheim, A., “Atlas of Genetics and Cytogenetics in Oncology and Haematology,” Nucleic acids research31(1). 272-4. 2003.
 
[29]  Fabunmi, R., Baker, A., Murray, E., Booth, R., Newby, A., “Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors or metalloproteinases-1,-2, and-3 in rabbit aortic smooth muscle cells,” Biochemical Journal (Pt 1). 315-335. 1996.
 
[30]  Kondapaka, SB., Fridman, R., Reddy, KB., “Epidermal growth factor and amphiregulin up‐regulate matrix metalloproteinase‐9 (MMP‐9) in human breast cancer cells,” International journal of cancer 70(6). 722-6. 1997.
 
[31]  Peters, DG., Kassam, A., Jean, P., Yonas, H., Ferrell, RE., “Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm,”Stroke30(12). 2612-6. 1999.
 
[32]  Bergoeing, M.P., Thompson, R.W., Curci, J.A., “Pharmacological targets in the treatment of abdominal aortic aneurysms Expert Opinion on Therapeutic Targets 10(4). 547-59.august2006.
 
[33]  Abdul-Hussien, H., Hanemaaijer, R., Verheijen, J.H., van Bockel, J.H., Geelkerken, R.H., Lindeman, J.H.N., “Doxycycline therapy for abdominal aneurysm: Improved proteolytic balance through reduced neutrophil content,” Journal of vascular surgery 49(3). 741-9. 2009.
 
[34]  Lindeman, J.H.N., Abdul-Hussien, H., van Bockel, J.H., Wolterbeek, R., Kleemann, R., “Clinical Trial of Doxycycline for Matrix Metalloproteinase-9 Inhibition in Patients With an Abdominal Aneurysm,” Circulation 119(16). 2209-16. 2009.
 
[35]  Liu, J., Xiong, W., Baca-Regen, L., Nagase, H., Baxter, B.T., “Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells,”Journal of vascular surgery 38(6). 1376-83. 2003.
 
[36]  Petrinec, D., Liao, S., Holmes, D.R., Reilly, J.M., Parks, W.C., Thompson, R.W., “Doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: preservation of aortic elastin associated with suppressed production of 92 kD gelatinase, Journal of vascular surgery 23(2). 336-46. 1996.
 
[37]  Boyle, J.R., McDermott, E., Crowther, M., Wills, A.D., Bell, P.R.F., Thompson M.M., “Doxycycline inhibits elastin degradation and reduces metalloproteinase activity in a model of aneurysmal disease.” Journal of vascular surgery 27(2). 354-61. 1998.
 
[38]  Manning, MW., Cassis, LA., Daugherty, A., “Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II–induced atherosclerosis and abdominal aortic aneurysms.” Arteriosclerosis, thrombosis, and vascular biology 23(3). 483-8. 2003.
 
[39]  Bartoli, MA., Parodi, FE., Chu, J., Pagano, MB., Mao, D., Baxter, BT., et al, “Localized administration of doxycycline suppresses aortic dilatation in an experimental mouse model of abdominal aortic aneurysm,” Annals of vascular surgery 20(2). 228-36. 2006.
 
[40]  Mosorin, M., Juvonen, J., Biancari, F., Satta, J., Surcel, HM., Leinonen, M., et al, “Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study.” Journal of vascular surgery 34(4). 606-10. 2001.
 
[41]  Baxter, BT., Pearce, WH., Waltke, EA., Littooy, FN., Hallett, Jr., Kent, KC., et al, “Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (Phase II) multicenter study,” Journal of vascular surgery 36(1). 1-12. 2002.
 
[42]  Xiong, W., Knispel, RA., Dietz, HC., Ramirez, F., Baxter, BT., “Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome, “ Journal of vascular surgery 47(1). 166-72. 2008.
 
[43]  Lee, C., Xu, B., Hashimoto, T., McCulloch, CE., Yang, GY., Young, WL., “Doxycycline suppresses cerebral matrix metalloproteinase-9 and angiogenesis induced by focal hyperstimulation of vascular endothelial growth factor in a mouse model,” Stroke 35(7). 1715-9. 2004 .
 
[44]  Goodall, S., Crowther, M., Hemingway, DM., Bell, PR., Thompson, MM., “Ubiquitous elevation of matrix metalloproteinase-2 expression in the vasculature of patients with abdominal aneurysms,” Circulation104(3). 304-9. 2001.
 
[45]  Nuki, Y., Tsou, TL., Kurihara, C., Kanematsu, M., Kanematsu, Y., Hashimoto, T., “Elastase-induced intracranial aneurysms in hypertensive mice,” Hypertension 54(6),. 1337-44. 2009.
 
[46]  Kaufmann, T., Marx, W., Kallmes, D., “A failure of matrix metalloproteinase inhibition in the prevention of rat intracranial aneurysm formation,” Neuroradiology 48(3). 190-5. 2006.
 
[47]  AAssar, OS., Fujiwara, NH., Marx, WF., Matsumoto, AH., Kallmes, DF., “Aneurysm growth, elastinolysis, and attempted doxycycline inhibition of elastase-induced aneurysms in rabbits,”Journal of vascular and interventional radiology 14(11). 1427-32. 2003.
 
[48]  Bellosta, S., Via, D., Canavesi, M., Pfister, P., Fumagalli, R., Paoletti, R., et al, “HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages,” Arteriosclerosis, thrombosis, and vascular biology 18(11). 1671-8. 1998.
 
[49]  Wilson, W., Evans, J., Bell, P., Thompson, M., “HMG-CoA reductase inhibitors (statins) decrease MMP-3 and MMP-9 concentrations in abdominal aortic aneurysms,” European journal of vascular and endovascular surgery 30(3). 259-62. 2005.
 
[50]  Nagashima, H., Aoka, Y., Sakomura, Y., Sakuta, A., Aomi, S., Ishizuka, N., et al, “A 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, cerivastatin, suppresses production of matrix metalloproteinase-9 in human abdominal aortic aneurysm wall,” Journal of vascular surgery 36(1). 158-63. 2002.
 
[51]  Saratzis, A., Kitas, GD., Saratzis, N., Melas, N., “Can statins suppress the development of abdominal aortic aneurysms? A review of the current evidence,” Angiology 61(2). 137-44. 2010.
 
[52]  Liang, E., Tada, Y., Wada, K., Makino, H., Kudo, M., Murakami S. et al, “Simvastatin Reduced The Rupture Of Intracranial Aneurysms In Mice,” in International Stroke Conference Poster Abstracts, New Orleans, La, 2012.