American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: http://www.sciepub.com/journal/ajps Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
Go
American Journal of Pharmacological Sciences. 2013, 1(5), 90-95
DOI: 10.12691/ajps-1-5-4
Open AccessArticle

Determination and Validation of Eflornithine Hydrochloride by (Rp-Hplc) Reversed Phase High Performance Liquid Chromatography

Amit Kumar1, Vijender Singh2 and Praveen Kumar3,

1Department of Pharmaceutical analysis, NKBR College of Pharmacy & Research Centre, Meerut, India

2Department of Pharmaceutical analysis, BBS Institute of Pharmaceutical & Allied Sciences, Greater Noida, India

3Department of Pharmaceutical Chemistry, S. D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India

Pub. Date: December 11, 2013

Cite this paper:
Amit Kumar, Vijender Singh and Praveen Kumar. Determination and Validation of Eflornithine Hydrochloride by (Rp-Hplc) Reversed Phase High Performance Liquid Chromatography. American Journal of Pharmacological Sciences. 2013; 1(5):90-95. doi: 10.12691/ajps-1-5-4

Abstract

A simple highly sensitive, rapid, precise, accurate and specific RP-HPLC method was developed for quantification of eflornithine hydrochloride (2-difluoromethyl-DL-ornithine; DFMO) in its commercial formulation. In this RP-HPLC method, the separation was performed using BDS Hypersil 5µ C18 (150 X 4.6 mm) column at room temperature by using methanol: 2% of Glacial acetic acid in water (80:20 v/v) as mobile phase. The flow rate was 0.8 mL min-1 with UV detection at 290 nm. The retention time of DFMO was 4.3. Linearity was observed over concentration range of 50-100 µg mL-1 for DFMO. The LOD and LOQ were found to be 0.008438 µg mL-1 and 0.028126 µg mL-1 respectively. The accuracy of the proposed method was determined by recovery studies and found to be 100.5 % for DFMO. The proposed method was validated for ICH guidelines like linearity, limit of detection, accuracy, precision, ruggedness, robustness, and system suitability.

Keywords:
eflornithine hydrochloride (DFMO) Validation ICH guidelines HPLC

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Merali, S. and Clarkson, A. B. Jr, “Polyamine content of Pneumocystis carinii and response to the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine,” Antimicrob. Agents Chemother. 40(4). 973-978. 1996.
 
[2]  Clarkson, A. B. Jr., C J Bacchi, C. J., Mellow, G. H., Nathan, H. C., McCann, P. P. and Sjoerdsma, A, “Efficacy of combinations of difluoromethylornithine and bleomycin in a mouse model of central nervous system African trypanosomiasis,” Proc. Natl. Acad. Sci., U.S.A. 80(18). 5729-5733. 1983.
 
[3]  Milord, F., Loko, L., Mpia, B. and Pepin, J. “Eflornithine concentrations in serum and cerebrospinal fluid of 63 patients treated for Trypanosoma brucei gambiense sleeping sickness,” Trans. R. Soc. Trop. Med. Hyg, 87(4). 473-7, 1993.
 
[4]  Pepin, J., Guern, C., Milord, F. and Schechter, P. J, “Difluoromethylornithine for arseno-resistant trypanosoma brucei gambiense sleeping sickness,” The Lancet., 330(8573). 1431-1433. 1987.
 
[5]  Balfour, J. A. and McClellan, K, “Topical eflornithine,” Am. J. Clin. Dermatol, 2(3). 197-201. 2001.
 
[6]  Cohen, J. L., Ko, R. J., Lo, A. T., Shields, M. D. and Gilman, T. M, “High-pressure liquid chromatographic analysis of eflornithine in serum,” J. Pharm. Sci., 78(2). 114-6. Feb. 1989.
 
[7]  Huebert, N. D., Schwartz, J. J. and Haegele, K. D, “ Analysis of 2-difluoromethyl-DL-ornithine in human plasma, cerebrospinal fluid and urine by cation-exchange high-performance liquid chromatography,” J. Chromatogr. A., 762(1-2). 293-8. Feb. 1997.
 
[8]  Saravanan, C., Kumudhavalli, M. V., Kumar, M. and Jayakar, B, “A new validated RP-HPLC method for estimation of eflornithine hydrochloride in dosage form,” J. Phar. Res., 2. 1730-1731. 2009.
 
[9]  Kilkenny, M. L., Slavik, M., Christopher, M. R. and Stobaugh, J. F, “Plasma analysis of alpha-difluoromethylornithine using pre-column derivatization with naphthalene-2, 3-dicarboxaldehyde/CN and multidimensional chromatography,” J. Pharm. Biomed. Anal., 17. 1205-1213. 1998.
 
[10]  Jansson-Löfmark, R., Römsing, S., Albers, E. and Ashton, M, “Determination of eflornithine enantiomers in plasma by precolumn derivatization with o-phthalaldehyde-N-acetyl-l-cysteine and liquid chromatography with UV detection,” Biomed. Chromatogr. 24(7). 768-773. July 2010.
 
[11]  Malm, M. and Bergqvist, Y, “Determination of eflornithine enantiomers in plasma, by solid-phase extraction and liquid chromatography with evaporative light-scattering detection,” J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 846. 98-104. 2007.
 
[12]  Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Kumar, P, “Spectrophotometric determination of eflornithine hydrochloride as active pharmaceutical ingredient using 1, 2-naphthoquinone-4-sulfonate as the derivative chromogenic reagent,” Trade Sci. Inc., 7, 2008.
 
[13]  Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Singh, A. K, “Estimation of eflornithine hydrochloride by UV spectroscopy,” Trade Sci. Inc., 8. 2009.
 
[14]  Validation of Analytical Procedures, Methodology ICH Harmonised Tripartite Guideline, Having Reached Step 4 of the ICH Process at the ICH Steering Committee meeting on November 6, 1996.