American Journal of Pharmacological Sciences
ISSN (Print): 2327-6711 ISSN (Online): 2327-672X Website: Editor-in-chief: Srinivas NAMMI
Open Access
Journal Browser
American Journal of Pharmacological Sciences. 2013, 1(5), 90-95
DOI: 10.12691/ajps-1-5-4
Open AccessArticle

Determination and Validation of Eflornithine Hydrochloride by (Rp-Hplc) Reversed Phase High Performance Liquid Chromatography

Amit Kumar1, Vijender Singh2 and Praveen Kumar3,

1Department of Pharmaceutical analysis, NKBR College of Pharmacy & Research Centre, Meerut, India

2Department of Pharmaceutical analysis, BBS Institute of Pharmaceutical & Allied Sciences, Greater Noida, India

3Department of Pharmaceutical Chemistry, S. D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India

Pub. Date: December 11, 2013

Cite this paper:
Amit Kumar, Vijender Singh and Praveen Kumar. Determination and Validation of Eflornithine Hydrochloride by (Rp-Hplc) Reversed Phase High Performance Liquid Chromatography. American Journal of Pharmacological Sciences. 2013; 1(5):90-95. doi: 10.12691/ajps-1-5-4


A simple highly sensitive, rapid, precise, accurate and specific RP-HPLC method was developed for quantification of eflornithine hydrochloride (2-difluoromethyl-DL-ornithine; DFMO) in its commercial formulation. In this RP-HPLC method, the separation was performed using BDS Hypersil 5µ C18 (150 X 4.6 mm) column at room temperature by using methanol: 2% of Glacial acetic acid in water (80:20 v/v) as mobile phase. The flow rate was 0.8 mL min-1 with UV detection at 290 nm. The retention time of DFMO was 4.3. Linearity was observed over concentration range of 50-100 µg mL-1 for DFMO. The LOD and LOQ were found to be 0.008438 µg mL-1 and 0.028126 µg mL-1 respectively. The accuracy of the proposed method was determined by recovery studies and found to be 100.5 % for DFMO. The proposed method was validated for ICH guidelines like linearity, limit of detection, accuracy, precision, ruggedness, robustness, and system suitability.

eflornithine hydrochloride (DFMO) Validation ICH guidelines HPLC

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Merali, S. and Clarkson, A. B. Jr, “Polyamine content of Pneumocystis carinii and response to the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine,” Antimicrob. Agents Chemother. 40(4). 973-978. 1996.
[2]  Clarkson, A. B. Jr., C J Bacchi, C. J., Mellow, G. H., Nathan, H. C., McCann, P. P. and Sjoerdsma, A, “Efficacy of combinations of difluoromethylornithine and bleomycin in a mouse model of central nervous system African trypanosomiasis,” Proc. Natl. Acad. Sci., U.S.A. 80(18). 5729-5733. 1983.
[3]  Milord, F., Loko, L., Mpia, B. and Pepin, J. “Eflornithine concentrations in serum and cerebrospinal fluid of 63 patients treated for Trypanosoma brucei gambiense sleeping sickness,” Trans. R. Soc. Trop. Med. Hyg, 87(4). 473-7, 1993.
[4]  Pepin, J., Guern, C., Milord, F. and Schechter, P. J, “Difluoromethylornithine for arseno-resistant trypanosoma brucei gambiense sleeping sickness,” The Lancet., 330(8573). 1431-1433. 1987.
[5]  Balfour, J. A. and McClellan, K, “Topical eflornithine,” Am. J. Clin. Dermatol, 2(3). 197-201. 2001.
[6]  Cohen, J. L., Ko, R. J., Lo, A. T., Shields, M. D. and Gilman, T. M, “High-pressure liquid chromatographic analysis of eflornithine in serum,” J. Pharm. Sci., 78(2). 114-6. Feb. 1989.
[7]  Huebert, N. D., Schwartz, J. J. and Haegele, K. D, “ Analysis of 2-difluoromethyl-DL-ornithine in human plasma, cerebrospinal fluid and urine by cation-exchange high-performance liquid chromatography,” J. Chromatogr. A., 762(1-2). 293-8. Feb. 1997.
[8]  Saravanan, C., Kumudhavalli, M. V., Kumar, M. and Jayakar, B, “A new validated RP-HPLC method for estimation of eflornithine hydrochloride in dosage form,” J. Phar. Res., 2. 1730-1731. 2009.
[9]  Kilkenny, M. L., Slavik, M., Christopher, M. R. and Stobaugh, J. F, “Plasma analysis of alpha-difluoromethylornithine using pre-column derivatization with naphthalene-2, 3-dicarboxaldehyde/CN and multidimensional chromatography,” J. Pharm. Biomed. Anal., 17. 1205-1213. 1998.
[10]  Jansson-Löfmark, R., Römsing, S., Albers, E. and Ashton, M, “Determination of eflornithine enantiomers in plasma by precolumn derivatization with o-phthalaldehyde-N-acetyl-l-cysteine and liquid chromatography with UV detection,” Biomed. Chromatogr. 24(7). 768-773. July 2010.
[11]  Malm, M. and Bergqvist, Y, “Determination of eflornithine enantiomers in plasma, by solid-phase extraction and liquid chromatography with evaporative light-scattering detection,” J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 846. 98-104. 2007.
[12]  Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Kumar, P, “Spectrophotometric determination of eflornithine hydrochloride as active pharmaceutical ingredient using 1, 2-naphthoquinone-4-sulfonate as the derivative chromogenic reagent,” Trade Sci. Inc., 7, 2008.
[13]  Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Singh, A. K, “Estimation of eflornithine hydrochloride by UV spectroscopy,” Trade Sci. Inc., 8. 2009.
[14]  Validation of Analytical Procedures, Methodology ICH Harmonised Tripartite Guideline, Having Reached Step 4 of the ICH Process at the ICH Steering Committee meeting on November 6, 1996.