American Journal of Public Health Research
ISSN (Print): 2327-669X ISSN (Online): 2327-6703 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Public Health Research. 2016, 4(1), 38-41
DOI: 10.12691/ajphr-4-1-6
Open AccessReview Article

Challenges to Achieving Malaria Elimination in Nigeria

Aribodor D. N.1, , Ugwuanyi I. K.1 and Aribodor O. B.2

1Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

2Department of Zoology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria

Pub. Date: January 28, 2016

Cite this paper:
Aribodor D. N., Ugwuanyi I. K. and Aribodor O. B.. Challenges to Achieving Malaria Elimination in Nigeria. American Journal of Public Health Research. 2016; 4(1):38-41. doi: 10.12691/ajphr-4-1-6


Malaria remains the most important public health parasitic disease and a major global health problem with the greatest burden in sub-Saharan Africa. Over 90% of all malaria deaths still occur in Africa where it kills over half a million children less than 5 years of age each year. Nigeria accounts for 25 percent of the world’s malaria burden. Apart from the health burden, the socio-economic consequences of malaria are enormous such that it was part of the Millennium Development Goals (MDGs). Following the end of MDG target to halt and reverse the incidence of malaria by 2015 which was considered a success, a new global target has been set. The new global strategy aims to reduce the global disease burden of malaria by 40% by 2020, and by at least 90% by 2030. It also aims to eliminate malaria in at least 35 new countries by 2030. Nigeria remains endemic for malaria and has the ambition to eliminate malaria. There are however challenges to confront in order to make the desired progress. Drug resistance, treatment failure, insecticide resistance, global warming and change in climate, conflicts, insurgency, and internally displaced persons, migration, lack of political will, inadequate malaria leadership, funding, and adequate local research constitute the challenges. Addressing these challenges is central to achieving malaria elimination.

malaria elimination challenges Nigeria

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  United Nations (2014). The Millennium Development Goals report 2014. United Nations, New York. Available: [Accessed December 12, 2015].
[2]  WHO (201/5). Global technical strategy for malaria (2016-2030). World Health Organization. 20 Avenue Appia, 1211 Geneva 27, Switzerland.
[3]  World Health Organization (2014). World malaria report 2014. Available: [Accessed 23 November, 2015].
[4]  World Health Organization (2012) Roll Back Malaria Partnership, WHO Focus in Nigeria. Progress and Impact Series. Community Report. 4: 58.
[5]  World Health Organisation (2015). Antimalarial Drug Resistance. Available: [Accessed July 11, 2015].
[6]  World Health Organization (2014). Update on artemisinin resistance ‐ September 2014. Geneva, World Health Organization.
[7]  Kyaw, M.P., Nyunt, M.H., Chit, K., Aye, M.M. and Aye, K.H. (2013). Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar. PLoS ONE 8(3): e57689.
[8]  Phyo, A.P., Nkhoma, S., Stepniewska, K., Ashley, E.A. and Nair, S. (2012). Emergence of artemisinin‐ resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379(9830): 1960-1966.
[9]  Hien, T.T., Thuy‐Nhien, N.T., Phu, N.H., Boni, M.F. and Thanh, N.V. (2012). In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam. Malaria Journal 11: 355.
[10]  Ariey, F., Witkowski, B., Amaratunga, C., Beghain, J. and Langlois, A.C. (2014). A molecular marker of artemisinin‐resistant Plasmodium falciparum malaria. Nature 505(7481): 50-55.
[11]  Hemingway, J. and Ranson, H. (2000) Insecticide resistance in insect vectors of human disease. Annual Review of Entomology, 45, 371-391.
[12]  Awolola, T.S., Brooke, B.D., Hunt, R.H. and Coetzee, M. (2002). Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides in southwestern Nigeria. Ann Trop Med Parasitol., 96: 849-52.
[13]  Awolola, T.S., Brooke, B.D., Koekemoer, L.L. and Coetzee, M. (2003). Absence of the kdr mutation in the molecular 'M' form suggests different pyrethroid resistance mechanisms in the malaria vector mosquito Anopheles gambiae s.s. Trop. Med. Int. Health., 8 (5): 420-422.
[14]  Awolola, T.S., Oyewole, I.O., Amajoh, C.N., Idowu, E.T., Ajayi, M.B., Oduola, A., Manafa, O.U., Ibrahim, K., Koekemoer, L.L., Coetzee, M. (2005). Distribution of the molecular M and S forms of Anopheles gambiae and pyrethroid knockdown resistance gene in Nigeria. Acta Tropica, 95: 204-209.
[15]  Awolola, T.S., Oduola, A.O., Oyewole, I.O., Obansa, J.B., Amajoh, C.N., Koekemoer, L.L. and Coetzee, M. (2007). Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae in Southwestern Nigeria. J. Vect. Borne. Dis., 44: 181-188.
[16]  Awolola, T.S., Oduola, O.A., Strode, C. and Koekemoer, L.L. (2008). Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans. R. Soc. Trop. Med. Hyg., 103 (11): 1139-45.
[17]  Okorie, P.N., Ademowo, O.G., Irving, H., Kelly-Hope, L.A. and Wondji, C.S. (2015). Insecticide susceptibility of Anopheles coluzzi and Anopheles gambiae in Ibadan, Southwest Nigeria. Medical and Veterinary Entomology 29: 44–50.
[18]  Ezenduka, C.C., Ogbonna, B.O., Ekwunife, O.I., Okonta, M.J. and Esimone, C.O. (2014). Drugs use pattern for uncomplicated malaria in medicine retail outlets in Enugu urban, southeast Nigeria: implications for malaria treatment policy. Malaria Journal 13:243
[19]  Craig, M., Snow, R. and Le Sueur, D. (1999). A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today; 6(3):105-110.
[20]  Tanser, F., Sharp, B. and Le Sueur, D. (2003). Potential effect of climate change on malaria transmission in Africa. Lancet, 6(9398):1792-1798
[21]  Craig, M., Kleinschmidt, I., Nawn, J., Le Sueur, D. and Sharp, B. (2004). Exploring 30 years of malaria case data in KwaZulu‒Natal, South Africa: part I. The impact of climatic factors. Trop Med Int Health, 6(12):1247-1257.
[22]  Hay, S.I., Cox, J., Rogers, D.J., Randolph, S.E., Stern, D.I., Shanks, G.D., Myers, M.F. and Snow, R.W.. (2002). Climate change and the resurgence of malaria in the East African highlands. Nature, 6(6874):905-909.
[23]  Paaijmans, K.P., Read, A.F. and Thomas, M.B. (2009). Understanding the link between malaria risk and climate. Proc Natl Acad Sci USA, 6(33): 13844-13849.
[24]  Kim, Y.M., Park, J.W. and Cheong, H.K. (2012). Estimated effect of climatic variables on the transmission of plasmodium vivax malaria in the Republic of Korea. Environ Health Perspect, 6(9): 1315.
[25]  Gagnon, A.S., Smoyer-Tomic, K.E. and Bush, A.B. (2002). The El Nino southern oscillation and malaria epidemics in South America. Int J. Biomet, 6(2):81-89.
[26]  Githeko, A.K., Lindsay, S.W., Confalonieri, U.E. and Patz, J.A. (2000). Climate change and vector-borne diseases: a regional analysis. Bull of the World Health Organization ,6(9):1136-1147.
[27]  Li, T., Yang, Z. and Wang, M. (2013). Temperature, relative humidity and sunshine may be the effective predictors for occurrence of malaria in Guangzhou, southern China, 2006–2012. Parasites and Vectors, 6(1):155.
[28]  Zucker, J.R. (1996). Changing patterns of autochthonous malaria transmission in the United States: a review of recent outbreaks. Emerg Infect Dis.;6(1):37.
[29]  Artzy-Randrup, Y., Alonso, .D. and Pascual, M. (2010). Transmission Intensity and Drug Resistance in Malaria Population Dynamics: Implications for Climate Change. PLoS ONE 5(10): e13588.
[30]  Hay, S., Cox, J., Rogers, D., Randolph, S. and Stern, D. (2002) Climate change and the resurgence of malaria in the East African highlands. Nature 415: 905-909.
[31]  Shanks, G., Hay, S., Omumbo, J. and Snow, R. (2005) Malaria in Kenya’s Western Highlands. Emerging Infectious Diseases 11(9).
[32]  Pasquale, H., Jarvese, M., Julla, A., Doggale, C., Sebit, B., Lual, M., Baba, S.P. and Chanda E. (2013). Malaria control in South Sudan, 2006-2013: Strategies, progress and challenges. Malaria Journal, 12:374.
[33]  Ross (2009). Malaria indicator survey report, Republic of south Sudan. Juba: Ministry of Health.
[34]  Rakhshani, F., Ansari, M.A., Alemi, R. and Moradi, A. (2003). Knowledge, perceptions and prevention of malaria among women in Sistan va Baluchestan, Islamic Republic of Iran. Eastern Mediterranean Health Journal 9:248-256.
[35]  Adongo, P.B., Kirkwood, B. and Kendall, C. (2005). How local community knowledge about malaria affects insecticide-treated net use in northern Ghana. Tropical Medicine and International Health 10:366-378.
[36]  Aribodor, D.N., Udeh, A.K., Ekwunife, C.A., Aribodor, O.B. and Emelummadu, O.F. (2014). Malaria Prevalence and Local Beliefs in Transmission and Control in Ndiowu Community, Anambra State, Nigeria. Nigerian Journal of Parasitology 35 (1and 2): 103-108.
[37]  Alaii, J.A., Van den Borne, H., Kachur, S.P., Shelley, K., Mwenesi, H., Vulule, J.M., Hawley, W.A., Nahlen, B.L. and Phillips-Howard, P.A. (2003). Community reactions to the introduction of permethrin-treated bed nets for malaria control during a randomized controlled trial in Western Kenya. The American Journal of Tropical Medicine and Hygiene 68:128-136.
[38]  Laver, S.M., Wetzels, J. and Behrens, R.H. (2001). Knowledge of malaria, risk perception, and compliance with prophylaxis and personal and environmental preventive measures in travelers exiting Zimbabwe from Harare and Victoria Falls International airport. Journal of Travel Medicine 8:298-303.
[39]  Obol, J., David Lagoro, K. and Christopher Garimoi, O. (2011). Knowledge and Misconceptions about Malaria among Pregnant Women in a Post-Conflict Internally Displaced Persons’ Camps in Gulu District, Northern Uganda. Malaria Research and Treatment 2011:1-7.
[40]  Roll Back Malaria (2011). Eliminating malaria: learning from the past, looking ahead, Progress and Impact Series, Volume 8. Geneva: World Health Organization.
[41]  Whittaker, M., Dean, A.J. and Chancellor, A. (2014). Advocating for malaria elimination - learning from the successes of other infectious disease elimination programmes. Malaria Journal 13:221.
[42]  Ejov, M., Davidyants, V. and Zvantsov, A. (2014). To maintain its malaria-free status, a country must show that it has the necessary political will and vision, has created the required legislative and regulatory framework and has adequate financial and administrative resources, personnel and technological capacity. WHO regional office for Europe .Pp 16.
[43]  Moonen, B., Cohen, J.M. and Snow, R.W. (2010). Operational strategies to achieve and maintain malaria elimination. Lancet; published online Oct 29.
[44]  Mlozi, M.R.S., Shayo, E.H., Senkoro, E.H. and Mayala, B.K. (2006). Participatory involvement of farming communities and public sectors in determining malaria control strategies in Mvomero District, Tanzania. Tanzaian. Health Research Bulletin, 8:134-140
[45]  O’Meara, W.P., Bejon, P., Mwangi, T.W. and Okiro, E.A. (2008). Effect of a fall in malaria transmission on morbidity and mortality in Kilifi, Kenya. Lancet, 372:1555-1562.
[46]  Bennett, S., Singh, S., Ozawa, S. and Tran, N.. (2011). Sustainability of donor programs: evaluating and informing the transition of a large HIV prevention program in India to local ownership. Global Health Action 4:7360.
[47]  Slutsker, L. (2012). Challenges in surveillance and response. Malaria Journal, 11(Suppl 1).
[48]  New challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Availlable: Accessed July 19, 2015.