American Journal of Numerical Analysis
ISSN (Print): 2372-2118 ISSN (Online): 2372-2126 Website: http://www.sciepub.com/journal/ajna Editor-in-chief: Emanuele Galligani
Open Access
Journal Browser
Go
American Journal of Numerical Analysis. 2014, 2(3), 69-75
DOI: 10.12691/ajna-2-3-1
Open AccessReview Article

From Fold to Fold-Hopf Bifurcation in IFOC Induction Motor: a Computational Algorithm

Nizar Jabli1, , Hedi Khammari2 and Mohamed Faouzi Mimouni3

1Department of Electronics, Higher institute of applied sciences and technology, Sousse, Tunisia

2Department of computer science, Faculty of computer science, Taief, Saudi Arabia

3Department of electrical engineering, National engineering school of, Monastir, Tunisia

Pub. Date: March 22, 2014

Cite this paper:
Nizar Jabli, Hedi Khammari and Mohamed Faouzi Mimouni. From Fold to Fold-Hopf Bifurcation in IFOC Induction Motor: a Computational Algorithm. American Journal of Numerical Analysis. 2014; 2(3):69-75. doi: 10.12691/ajna-2-3-1

Abstract

Analytical determination of the bifurcation thresholds is of important interest for practical electrical machine design and analysis control. This paper presents mathematical investigation of the qualitative behavior of indirect filed oriented control induction motor based on bifurcation theory. In this context, steady-state responses analysis of the motor model is discussed and an analytical study of generic bifurcations was made. Particular attention is paid to the codimension two bifurcation namely Fold-Hopf bifurcation. The paper introduces some elementary mechanisms of transit from Fold to Fold-Hopf parameter singularity, to derive some analytical rigorous existence conditions and to develop an algorithm for Fold-Hopf bifurcation detection. Some numerical results of equilibrium properties and bifurcation diagrams are then performed to outline our methodology.

Keywords:
IFOC Induction Motor steady-state responses bifurcation Fold Hopf Fold-Hopf

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  H. Kawakami. Bifurcations of periodic responses in forced dynamic non linear circuits, computation of bifurcation values of the system parameter, IEEE trans. circuits and systems, cas-31, pp 248-260, 1984.
 
[2]  H. Khammari, C. Mira and J.P. Carcass` es. Behaviour of harmonics generated by a Duffing type equation with a nonlinear damping, Part I. International Journal of Bifurcation and Chaos, Vol. 15, No. 10, 3181-3221, 2005.
 
[3]  K. Yahyia, S. zouzou, F. Benchabane. Indirect vector control of induction motor with on line rotor resistance identification, Asian Journal of Information and Technology Volume (5) 12, 2006, pp. 1410-1415.
 
[4]  Seok Ho Jeon, Dane Baang, and Jin Young Choi. Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors, International Journal of Control, Automation, and Systems, vol. 4, no. 4, pp. 414-427, August 2006.
 
[5]  A. S. Bazanella R. Reginatto. Instability Mechanisms in Indirect Field Oriented Control Drives: Theory and Experimental Results, IFAC 15th Triennial World Congress, Barcelona, Spain, 2002.
 
[6]  A.S. Bazanella, R. Reginatto and R. Valiatil. On Hopf bifurcations in indirect field oriented control of induction motors: Designing a robust PI controller, 1, Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona USA, December, 1999.
 
[7]  C. Mira, J. P. Carcass` es, C. Simo, J. C. Tatjer. Crossroad area-spring area transition. (II) Foliated parametric representation, Int. J. Bifurcation and Chaos 1 (2), 339-348, 1991.
 
[8]  R. Reginatto, F. Salas, F. Gordillo and J. Aracil. Zero-Hopf Bifurcation in Indirect Field Oriented Control of Induction Motors, First IFAC Conference on Analysis and Control of Chaotic Systems: CHAOS’ 06, 2006.
 
[9]  F. Salas, R. Reginatto, F. Gordillo and J. Aracil. Bogdanov-Takens Bifurcation in Indirect Field Oriented Control of Induction Motor Drives, 43rd IEEE Conference on Decision and Control, Bahamas, 2004.
 
[10]  F. Salas, F. Gordillo, J. Aracil and R. Reginatto. Codimension-two Bifurcations In Indirect Field Oriented Control of Induction Motor Drives, International Journal of Bifurcation and Chaos, 18 (3), 779-792, 2008.
 
[11]  C. C. de-Wit, J. Aracil, F. Gordillo and F. Salas. The Oscillations Killer: a Mechanism to Eliminate Undesired Limit Cycles in Nonlinear Systems, CDC-ECC’ 05, Seville, Spain, 2005.
 
[12]  B. Zhang, Y. Lu and Z. Mao. Bifurcations and chaos in indirect field oriented control of induction motors, Journal of Control Theory and Applications, 2, 353-357, 2004.
 
[13]  A. Algaba, E. Freire, E. Gamero and A. J. Rodriguez-Luis. Analysis of Hopf and Takens Bogdanov Bifurcations in a Modified van der PolDuffing Oscillator, Nonlinear Dynamics 16: 369404, 1998.
 
[14]  A. S. Bazanella and R. Reginatto. Robustness Margins for Indirect Field- Oriented Control of Induction Motors, IEEE Transaction on Automatic Control, 45, 1226-1231, 2000.
 
[15]  F. Gordillo, F. Salas, R. Ortega and J. Aracil. Hopf Bifurcation in indirect field-oriented control of induction motors, Automatica, 38, 829- 835, 2002.
 
[16]  N. Jabli, H. Khammari, M.F. Mimouni, An Analytical Study of Low- Codimension Bifurcations of Indirect Field-Oriented Control of Induction Motor. ‘International Journal of Mathematical Models and Methods in Applied Sciences’, Vol. 4, Issue 2.
 
[17]  N. Jabli, H. Khammari, M.F. Mimouni. An analytical study of bifurcation and nonlinear behavior of indirect filed-oriented control induction motor. 6th WSEAS International Conference on dynamical systems & control, CONTROL’ 10, Sousse, May 3-6, 2010.
 
[18]  N. Jabli, H. Khammari, M.F. Mimouni. Bifurcation scenario and chaos detection under variation of PI controller and induction motor parameters. 9th WSEAS International Conference on Non-Linear Analysis, Non-Linear System and Chaos, NOLASC’ 10, Sousse, Tunisia, 3-6 Mai 2010.
 
[19]  N. Jabli, H. Khammari, M.F. Mimouni, Multi-Parameter Bifurcation Analysis of a Three-Phases Induction Motor.’International Review of Electrical Engineering’, IREE, volume 5, Issue 2, 2010.