American Journal of Numerical Analysis
ISSN (Print): 2372-2118 ISSN (Online): 2372-2126 Website: http://www.sciepub.com/journal/ajna Editor-in-chief: Emanuele Galligani
Open Access
Journal Browser
Go
American Journal of Numerical Analysis. 2014, 2(2), 55-59
DOI: 10.12691/ajna-2-2-4
Open AccessArticle

A Priori Error Analysis and Numerical Simulation of Fully Discrete H1-Galerkin Mixed Element Method for Nonlinear Pseudo-Hyperbolic Equation

Guoyu Zhang1, Lijun Huang1, Zudeng Yu1, Yang Liu1, , Hong Li1, and Min Zhang1

1School of Mathematical Sciences, Inner Mongolia University, Hohhot, China

Pub. Date: February 28, 2014

Cite this paper:
Guoyu Zhang, Lijun Huang, Zudeng Yu, Yang Liu, Hong Li and Min Zhang. A Priori Error Analysis and Numerical Simulation of Fully Discrete H1-Galerkin Mixed Element Method for Nonlinear Pseudo-Hyperbolic Equation. American Journal of Numerical Analysis. 2014; 2(2):55-59. doi: 10.12691/ajna-2-2-4

Abstract

In this article, a fully discrete two-step H1-Galerkin mixed method is presented for nonlinear pseudo-hyperbolic equation. The spatial direction and time direction are approximated by H1-Galerkin mixed method and two-step difference method, respectively. Some a priori error results are analyzed for the scalar unknown function u and its flux . Moreover, a numerical test is made to verify our theoretical error analysis.

Keywords:
two-step discrete method H1-Galerkin mixed method nonlinear pseudo-hyperbolic equation a priori error analysis fully discrete scheme

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Y. Liu, H. Li, J.F. Wang, S. He. Splitting positive definite mixed element methods for pseudo-hyperbolic equations. Numer. Methods Partial Differential Equations, 28(2), (2012), 670-688.
 
[2]  D.Y. Shi, Q.L. Tang, Superconvergence analysis of splitting positive definite nonconforming mixed finite element method for pseudo-hyperbolic equations, Acta Mathematicae Applicatae Sinica, English Series, 29(4), (2013), 843-854.
 
[3]  H. Guo, Analysis of split weighted least-squares procedures for pseudo-hyperbolic equations, Appl. Math. Comput., 217(8), (2010), 4109-4121.
 
[4]  H. Guo, H.X. Rui, Least-squares Galerkin procedures for pseudo-hyperbolic equations, Appl. Math. Comput., 189, (2007), 425-439.
 
[5]  Y. Liu, H. Li, H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations, Appl. Math. Comput., 212(2), (2009) 446-457.
 
[6]  Z. J. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34 (2010), 2414-2425.
 
[7]  Y.D. Zhang, Y.Q. Niu, D.W. Shi. Nonconforming H1-Galerkin mixed finite element method for pseudo-hyperbolic equations, American Journal of Computational Mathematics, 2, (2012), 269-273.
 
[8]  Y. Liu, J.F. Wang, H. Li, W. Gao, S. He, A new splitting H1-Galerkin mixed method for pseudo-hyperbolic equations, World Academy of Science, Engineering and Technology, 51, (2011), 1444-1449.
 
[9]  Z.C. Fang, H. Li, Z.D. Luo, A mixed covolume method for pseudo-hyperbolic equation, Acta Mathematica Scientia, 33A(3), (2013), 535-550
 
[10]  A.K. Pani, An H1-Galerkin mixed finite element method for parabolic partial differential equations, SIAM J. Numer. Anal. 35, (1998), 712-727.
 
[11]  A.K. Pani, G. Fairweather, H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMA Journal of Numerical Analysis, 22, (2002), 231-252.
 
[12]  A.K. Pani, R.K. Sinha, A.K. Otta. An H1-Galerkin mixed method for second order hyperbolic equations, International Journal of Numerical Analysis and Modeling, 1(2), (2004), 111-129.
 
[13]  L. Guo, H.Z. Chen, H1-Galerkin mixed finite element method for Sobolev equations, J. Sys. Sci. Math. Scis., 26(3), (2006), 301-314.
 
[14]  L. Guo, H.Z. Chen, H1-Galerkin mixed finite element method for the regularized long wave equation, Computing, 77, (2006), 205-221.
 
[15]  Y. Liu, H. Li, Y. W. Du, and J. F. Wang, Explicit multistep mixed finite element method for RLW equation, Abstract and Applied Analysis, Volume 2013, Article ID 768976, 12 pages.
 
[16]  Y. Liu, H. Li, J.F. Wang. Error estimates of H1-Galerkin mixed finite element method for Schrodinger equation, Appl. Math. J. Chinese Univ., 24(1), (2009), 83-89.
 
[17]  D.Y. Shi, H.H. Wang, Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Mathematicae Applicatae Sinica(English Series), 25(2), (2009), 335-344.
 
[18]  H.Z. Chen, H. Wang, An optimal-order error estimate on an H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow, Numerical Methods for Partial Differential Equations, 26(1) (2010) 188-205.
 
[19]  H.T. Che, Z.J. Zhou, Z.W. Jiang, Y.J. Wang, H1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations, Numer. Methods for Partial Differential Equations, 29(3), (2013), 799-817.
 
[20]  A.K. Pany, N. Nataraj, S. Singh, A new mixed finite element method for burgers equation, J. Appl. Math. Comput., 23(1-2) (2007), 43-55.
 
[21]  Z D Luo. Theory Bases and Applications of Finite Element Mixed Methods, Science Press, Beijing, 2006.