You are here:

American Journal of Nanomaterials

ISSN (Print): 2372-3114

ISSN (Online): 2372-3122


Content: Volume 1, Issue 2


Sensing Capability of Fluorescent Sodium Salt of Amoxicillin

1Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan

2Department of Chemistry, Shankar Campus, Abdul Wali Khan University Mardan, KPK, Pakistan

American Journal of Nanomaterials. 2013, 1(2), 27-30
DOI: 10.12691/ajn-1-2-3
Copyright © 2013 Science and Education Publishing

Cite this paper:
Abdul Hameed, Andaleeb Azam. Sensing Capability of Fluorescent Sodium Salt of Amoxicillin. American Journal of Nanomaterials. 2013; 1(2):27-30. doi: 10.12691/ajn-1-2-3.

Correspondence to: Abdul  Hameed, Department of Chemistry, Kohat University of Science and Technology, Kohat, KPK, Pakistan. Email:


The capability of already available antibiotic drug ‘amoxicillin’ based on its fluorescent property has been explored. The fluorescent sodium salt of amoxicillin was used for the detection of heavy metals in aqueous solutions. It was found that Copper and Silver has a quenching effect on the fluorescence of amoxicillin. Cu2+ ions were detected in aqueous solution up to 1x10-7 M and Ag1+ ions up to 1x10-6 M. Hg2+ ions were also detected in aqueous samples but in high concentration.



[1]  A. X. Trautwein (Ed.), Bioinorganic Chemistry, Wiley VCH, Weinheim, 1997.
[2]  E. Merian (Ed.), Metals and Their Compounds in the Environment, VCH, Weinheim, 1991.
[3]  L. Sigg, H. Xue, Metal speciation: concepts, analysis and effects, in G. Bidoglio, W. Stumm (Eds.), Chemistry of Aquatic Systems: Local and Global Perspectives, Kluwer Academic Publishers, Dordrecht, 1994, p.153.
[4]  J. Szpunar, R. Lobinski, Fresenius J. Anal. Chem. 363 (1999) 550.
[5]  D. Radisky, J. Kaplan, J. Biol. Chem. 274 (1999) 4481.
Show More References
6]  D. Beyersmann, The significance of interactions in metal essentiality and toxicity, in :E. Merian (Ed.), Metals and Their Compounds in the Environment, VCH, Weinheim, 1991, p.491 Chapter I.10.
7]  Brust, M.; Walker, M.; Bethell, D.; Schffrin, D. J.; Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 801.
8]  Templeton, A. C.; Wuelfing, M. P.; Murray, R. W., Acc. Chem. Res. 2000, 33, 27.
9]  Zheng, J.; Zhang, C.; Dickson, R. M., J. Phys. Rev. Lett. 2004, 93, 077402.
10]  Zheng, J.; Petty, J. T.; Dickson, R. M., J. Am. Chem. Soc. 2003, 125, 7780.
11]  Schaaff, T. G.; Whetten, R. L., Giant Gold−Glutathione Cluster Compounds:  Intense Optical Activity in Metal-Based Transitions. The Journal of Physical Chemistry B 2000, 104 (12), 2630-2641.
12]  Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L., J. Phys. Chem. B 1998, 102, 10643.
13]  Koneswaran, M.; Narayanaswamy, R., l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors and Actuators B: Chemical 2009, 139 (1), 104-109.
14]  Yang, W.; Gooding, J. J.; He, Z.; Li, Q.; Chen, G., Fast Colorimetric Detection of Copper Ions Using L-Cysteine Functionalized Gold Nanoparticles. Journal of Nanoscience and Nanotechnology 2007, 7 (2), 712-716.
15]  Sugunan, A.; Thanachayanont, C.; Dutta, J.; Hilborn, J. G., Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Science and Technology of Advanced Materials 2005, 6 (3-4), 335-340.
16]  Liu, J.; Lu, Y., A DNAzyme Catalytic Beacon Sensor for Paramagnetic Cu2+ Ions in Aqueous Solution with High Sensitivity and Selectivity. Journal of the American Chemical Society 2007, 129 (32), 9838-9839.
17]  Lan, G.-Y.; Huang, C.-C.; Chang, H.-T., Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chemical Communications 2010, 46 (8), 1257-1259.
18]  Zheng, Y.; Orbulescu, J.; Ji, X.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M., Development of Fluorescent Film Sensors for the Detection of Divalent Copper. Journal of the American Chemical Society 2003, 125 (9), 2680-2686.
19]  Hameed, A.; Islam, N. U.; Shah, M. R.; Kanwal, S., Facile one-pot synthesis of gold nanoparticles and their sensing protocol. Chemical Communications 2011, 47 (43), 11987-11989.
20]  Bird, A. E., ANALYTICAL PROFILES OF DRUG SUBSTANCES AND EXCIPIENTS-VOLUME 23. Analytical Profiles of Drug Substances and Excipients 1994, 23, 1.
21]  Brittain, H. G., Solid-state fluorescence of the trihydrate phases of ampicillin and amoxicillin. AAPS PharmSciTech 2005, 6 (3), 444-448.
Show Less References


Adsorption of Iron and Synthesis of Iron Nanoparticles by Aspergillus Species Kvp 12

1Department of Biotechnology, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India

American Journal of Nanomaterials. 2013, 1(2), 24-26
DOI: 10.12691/ajn-1-2-2
Copyright © 2013 Science and Education Publishing

Cite this paper:
K. V. Pavani, N.Sunil Kumar. Adsorption of Iron and Synthesis of Iron Nanoparticles by Aspergillus Species Kvp 12. American Journal of Nanomaterials. 2013; 1(2):24-26. doi: 10.12691/ajn-1-2-2.

Correspondence to: K. V. Pavani, Department of Biotechnology, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India. Email:


Biosorption technology has gained tremendous importance in bioremediation and microbes could become the cheapest tool in detoxification of effluent streams. Aspergillus sp. isolated from the soil sample collected from the area near Hyderabad Metal Plating Industry, I.D.A, Balanagar, Hyderabad, India have been investigated in this study. The growth kinetics of Aspergillus sp. was studied by growing the fungi at different concentration of iron ranging between 0.2mM – 12 mM (Ferrous sulphate). The culture showed considerable inhibition of growth with iron when compared to the metal free controls. The maximum amount of iron was observed in the medium containing 3.0 mM concentration and further increase in the metal concentration was found to increase metal adsorption. Transmission Electron Microscopy analysis revealed the adsorption of iron nanoparticles on the cellwall.



[1]  Volesky. B. and Holan, Z, “Biosorption of heavy metals”, Biotechnol. Prog, 11, 235-250, 1995.
[2]  Verma, N. and Rehal, R, “Removal of Chromium by Albizia libbeck pods from industrial wastewater”, J. ind. Pollut. Control, 12, 1, 55-59, 1996.
[3]  Egwaikhide, P.A. Asia, 1.O. and Emua, S.A, “Binding of Zinc, Nickel and Cadmium ions by carbonized Rice husk”, African. J. Sci, 3,2, 673-681, 2002.
[4]  Kasan, H.C. and Baeckert, A.A.W, “Activated sludge treatment of coal gasification effluent in a petrochemical plant. Metal accumulation by heterotrophic bacteria”, Water Sci. Tech. 21,4/5, 297-303, 1989.
[5]  Lodi, A. Solisoio, C. Converti, A. and DelBorghi, “Cadmium, Zinc, Copper, Silver and Chromium (III).Removal from waste waters by Sphaerotilus natans”, Bioprocess Eng. 19,3, 197- 203,1989.
Show More References
6]  Taniguchietal, J. Hemmi, H. Tanahashi, K. Amano,N.Nakayama, T. Nishim, T. 2000. Zinc biosorption by a zinc resistant bacterium Brevibacterium sp. Strain, H2M-1. Appl Microbial Biotechnol. 54, 581-588.
7]  Valdman,E and Leite S.G.F,“Biosorption of Cd, Zn and Cu by Saragssum Sp. Waste biomass”, Bioprocess Eng, 22, 171-173,2000.
8]  González-Guerrero, M. Benabdellah, K. Ferrol, N. and Azcón-Aguilar, C, Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas—Functional Processes and Ecological Impacts. Springer, Berlin, 107-122, 2009.
9]  Eisendle, M. Schrettl, M. Kragl, C. Müller, D. Illmer, P. and Haas, H, “The intracellular Siderophore ferricrocin is involved in iron storage, oxidative-stress resistance, germination, and sexual development in Aspergillus nidulans”, Eukaryot Cell, 5,10, 1596-1603,2006.
10]  Schrettl, M. Kim, H.S. Eisendle, M. Krag,l C. Nierman, W.C, Heinekamp, T. Werner, E.R. Jacobsen, I. Illmer, P. Yi, H. Brakhage, A.A. Haas, H, “SreA-mediated iron regulation in Aspergillus fumigates”, Mol Microbiol, 70, 1, 27-43,2008.
11]  Johnson, L, “Iron and siderophores in fungal-host interactions”, Mycol Res, 112,170-183, 2008.
12]  Guerinot, M.L, “Microbial iron transport”, Annu. Rev. Microbial, 48,1, 743-772, 1994.
13]  Beveridge,T.J. and Murray,R, “Sites of metal deposition in the cell wall of Bacillus subtilis”, Journal of Bacteriology, 141, 2, 876-887, 1980.
14]  Johnson, D.B, “Biodiversity and ecology of acidophilic microorganisms”, FEMS Microbiology Ecology, 27, 4, 307-317, 1998.
15]  De la Torre, M.A. and Gomez-Alarcon,G, Manganese and Iron Oxidation by Fungi Isolated from building Stone”, Microb Ecol, 27,2,177-188, 1994.
Show Less References


Changes in the Structure and Magnetic Characteristic of Nanofilms and Control of Spin Current by Short Laser Pulses

1Laboratory of Magnetic Nanostructures, Institute of Magnetism NAS of Ukraine, Kyiv, Ukraine

American Journal of Nanomaterials. 2013, 1(2), 13-23
DOI: 10.12691/ajn-1-2-1
Copyright © 2013 Science and Education Publishing

Cite this paper:
Mykola M. Krupa. Changes in the Structure and Magnetic Characteristic of Nanofilms and Control of Spin Current by Short Laser Pulses. American Journal of Nanomaterials. 2013; 1(2):13-23. doi: 10.12691/ajn-1-2-1.

Correspondence to: Mykola M. Krupa, Laboratory of Magnetic Nanostructures, Institute of Magnetism NAS of Ukraine, Kyiv, Ukraine. Email: krupa@imag.kiev.ual


The article focuses on photon drag effect under laser radiation in solid state materials. This effect causes a high concentration of nonequilibrium electrons in the area of the laser beam the exit out of material. Coulomb interaction of spatial charge of these electrons with the charged impurity atoms can cause their drift in the direction of laser radiation. The photon drag effect can be used in laser doping technology of thin films. In multilayer magnetic nanofilms the photon drag effect of polarized electrons can lead to magnetic reversal of magnetic layers, which can be used to control a high speed spin current in the elements of spintronics.



[1]  Ohno, “Making Nonmagnetic Semiconductors Ferro-magnetic”, Science, vol. 281, pp. 951-956, August, 1998.
[2]  J. Cibert, J. Bobo, U. Lüders, “Development of new materials for spintronics”, Comptes Rendus Physique, vol. 6, pp. 977-996, Sept. 2005.
[3]  V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, R. A. de Groot, “Half-metallicity in NiMnSb: A variational cluster approach with ab initio parameters”, Rev. Mod. Phys., vol. 81, pp. 315-323, May 2010.
[4]  E. A. Al-Nuaimy, Hussein Al Abdulqader, Journal of Electron Devices, “BJT Fabrication Using Excimer Laser Assisted Spin-on Doping Technique”, Journal of Electron Devices, vol. 6, pp. 197-202, 2008.
[5]  I. Zuti´c, J. Fabian, and S. Das Sarma, “Spintronics: Funda-mentals and Applications,” Rev. Mod. Phys., vol. 76, #2, pp. 323-410, Febr. 2004.
Show More References
6]  P. S. Pershan, J. P. Ziel , and L. D. Malmstrom, Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena, Phys. Rev., vol. 143, #2. pp. 574-583, 1966.
7]  R. Hertel, Theory of Optical Rotation, Faraday Effect, and Inverse Faraday Effect, Journal of Magnetism and Magnetic Materials, vol. 303, pp. L1-L4, 2006.
8]  J. C. Slonczewski, Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials, vol. 159, pp. L 1-L7, 1996.
9]  J. Katine, F. Albert, R. Buhrman E. B. Myers and D. C. Ralph., Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillar, Phys. Rev. Letters, vol. 84, pp. 3149-3152, 2000.
10]  M.M. Krupa, Spin_Dependent Current and Magnetization Reversal in Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76 Nanofilms in Laser Radiation Field, Journal of Experimental and Theoretical Physics, vol. 108, pp. 856-865, #5, 2009.
11]  M. M. Krupa, Laser Radiation Control of the Magnetic State of Multilayer Nanofilms, Technical Physics, vol. 56, #1, pp. 107-116. 2011.
12]  A. M. Danishevskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, “Photon drag effect of the free carriers in direct interband transitions in semiconductors”, Sov. Phys. JETP, vol. 31, pp. 292-297, Nov. 1970.
13]  A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett.,vol. 17, pp. 75-79, Febr. 1970.
14]  J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals”, Phys. Rev., B, vol. 61, #15, pp. 10471-10477, April 2000.
15]  M.M. Krupa, A. M. Pogorily, “Scanning of laser radiation and clearing of materials on the basis of the phenomenon light induced drift of particles in semiconductors”, Sov. Technical Physics, vol.68, № 4. – P.121-124, 1998.
16]  M.M. Krupa, A.M. Korostil, Yu. B. Skirta, “Drift электронов and atoms in the field of laser radiation and its influence on optical properties of semiconductors”, Radiophys. and Quantum Electronic., vo. XLVIII, № 8 pp. 45-52, 2005.
17]  M.M. Krupa, Yu. B. Skirta, “Drift of atoms of bismuth in the field of laser radiation and a data recording in thin films phthalocyanine dye”, Radiophysic and Quantum Electronic, vol. XLІХ, №6, pp. 513-518, 2006.
18]  R. Merservey, P. M. Tedrov, “Spin-Polarized Electron Tun-neling”, Phys. Rep., vol. 238, #4, pp. 175-239, 1994.
19]  R. Pittini, P. Wachter, Cerium compounds: The new gen-eration magneto-optical Kerr rotators with unprecedented large figure of merit”, JMMM, vol. 186, #3, pp. 306-312, July 1998.
20]  H. J. Leamy, A. G. Dirks, “Microstructure and magnetism in amorphous rare-earth-transition-metal thin films. II Magnetic anisotropy “, J. Appl. Phys., vol. 50, №4, pp. 2871-2882, 1979.
21]  M.M. Krupa, A.M. Korostil, Impact of laser irradiation on magneto-optical properties of multilayered film structures, Inter. Journal of Modern Physics B, vol. 21,#32, pp. 5339-5350, 2007.
22]  M. Komori, T. Nukata, K. Tsutsumi, C. Inokyti, I. Sakyrai, “Amorphous TbFe Films for Magnetic Printing with Laser Writing”, IEEE Trans. Magnetic, vol. 20, №5, pp. 1042-1044, 1984.
23]  M. Julliere, “Tunneling between ferromagnetic films”, Phys. Letter., vol. 54, #3, pp. 225-226, September 1975.
Show Less References

Someone is Doing on SciEP

Statistics of This Journal

Article Downloads: 55721

Article Views: 148639

Sponsors, Associates, and Links

To list your link on our website, please click here or contact us
Viral Hepatitis Congress 2015