American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: http://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2018, 6(1), 24-33
DOI: 10.12691/ajn-6-1-3
Open AccessArticle

Growth of a-axis Textured Pulsed Laser Deposited VO2 Nanostructures on Glass Substrate

M Thiam1, BD Ngom1, 2, , O Sakho1, NM Ndiaye1, 3, M Chaker4, N Manyala3 and AC Beye1

1Laboratoire de Photonique et Nano-Fabrication, Groupe de physique du Solide et Sciences des Matériaux (GPSSM), Faculté des Sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar (Senegal)

2Institut National de la Recherche Scientifique Centre – Énergie Matériaux Télécommunications 1650, Boul. Lionel Boulet, Varennes (Québec) J3X 1S2;UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria 2000, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS, National Research Foundation of South Africa, 1 Old Faure Road, Somerset West 7129, Western Cape, South Africa

3Department of Physics, SARChI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 2001, South Africa

4Institut National de la Recherche Scientifique Centre – Énergie Matériaux Télécommunications 1650, Boul. Lionel Boulet, Varennes (Québec) J3X 1S2

Pub. Date: June 09, 2018

Cite this paper:
M Thiam, BD Ngom, O Sakho, NM Ndiaye, M Chaker, N Manyala and AC Beye. Growth of a-axis Textured Pulsed Laser Deposited VO2 Nanostructures on Glass Substrate. American Journal of Nanomaterials. 2018; 6(1):24-33. doi: 10.12691/ajn-6-1-3

Abstract

Vanadium dioxide thin film nanostructures were synthesized by pulsed laser deposition on soda lime glass at a substrate temperature of 600°C and an oxygen ambient pressure of 15 mTorr. The effect of cooling pressure on the crystalline orientation of VO2 nanostructures was investigated. As the cooling oxygen pressure is increased, the VO2 nanostructures exhibit sharp a-axis diffraction peaks, showing the growth of (1 0 0) oriented VO2 on glass, which is characteristic of the VO2 monoclinic phase and implies that pure highly a-axis textured VO2 was formed. We found that the growth mechanism and substrate–film interaction play important roles in the development of these well-textured films via the formation of an interlayer of SiO2.

Keywords:
crystal growth crystal morphology vapor phase epitaxy grain growth growth models pulsed laser deposition

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 9

References:

[1]  BJ Kim, YW Lee, BG Chae, SJ Yun, SY Oh and HT Kim, «Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor, Appl. Phys. Lett. 90 (2007) 023515.
 
[2]  HT Kim, BG Chae, DH Youn, SL Maeng, G Kim, KY Kang and YS Lim, Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices, New. J. Phys. 6 (2004) 52.
 
[3]  FJ Morin, Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature, Phys. Rev. Lett. 3 (1959) 34.
 
[4]  IN Zheludev, The Road Ahead for Metamaterials, Science 328 (2010) 582.
 
[5]  T.Driscoll, H-T Kim, B-G Chae, M Di Ventra and DN Basov, Phase-transition driven memristive system, Appl. Phys. Lett. 95 (2009) 043503.
 
[6]  W Huang, X Yin, C Huang, Q Wang, T Miao and Y Zhu, Optical switching of a metamaterial by temperature controlling, Appl. Phys. Lett. 96 (2010) 261908.
 
[7]  BD. Ngom, M. Chaker, I. G. Madiba, S. Khamlich, N. Manyala, O. Nemraoui, R. Madjoe, A. C. Beye and M Maaza, “Competitive Growth Texture of Pulse Laser Deposited VO2 Nanostructures on Glass Substrate”, Acta Materialia Volume 65, 15 February 2014, Pages 32–41
 
[8]  AS Barker Jr., HW Verleur, HJ Guggenheim, Infrared Optical Properties of Vanadium Dioxide Above and Below the Transition Temperature, Phys. Rev. Lett 17 (1966) 1286.
 
[9]  PJ Fillingham, Domain structure and twinning in crystals of vanadium dioxide, J. Appl. Phys. 38 (1967) 4823.
 
[10]  JB Goodenough, the two components of the crystallographic transition in VO2, J. Solid. State. Chem. 3 (1971) 490.
 
[11]  MM Qazilbash, KS Burch, D Whisler, D Shrekenhamer, BG Chae, H.T.Kim and D.N.Basov, Correlated metallic state of vanadium dioxide, Phys. Rev. B. 74 (2006) 205118.
 
[12]  MM Qazilbash, AA Schafgans, KS Burch, SJ Yun, BG Chae, BJ Kim, H.T.Kim, D.N.Basov, electrodynamics of the vanadium oxides VO2 and V2O3, Phys. Rev. B. 77 (2008) 115121.
 
[13]  PB Barna, M Adamik, fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films 317 (1998) 27.
 
[14]  I Petrov, PB Barna, L Hultman and JE Greene, microstructural evolution during film growth, J. Vac. Sci. Technol. A 21 (2003) S117.
 
[15]  M. Adatnik, P.B. Barna “Role of underlayers in the development of evolutionary texture in polycrystalline thin films” Surface and Coatings Techtlology 80 (1996) 109-112.
 
[16]  GJ Kovacs, D Burger, I Skorupa, H Reuther, R Heller and H Schmidt, effect of the substrate on the insulator–metal transition of vanadium dioxide films, J. Appl. Phys. 109 (2011) 063708.
 
[17]  G Garry, O Durand and A Lordereau, structural, electrical and optical properties of pulsed laser deposited VO2 thin films on R- and C-sapphire planes, Thin Solid Films. 453-454 (2004) 427-430.
 
[18]  T-W Chiu, K Tonooka and N Kikuchi, influence of oxygen pressure on the structural, electrical and optical properties of VO2 thin films deposited on ZnO/glass substrates by pulsed laser deposition, Thin Solid Films. 518 (2010) 7441-7444.
 
[19]  T-W Chiu, K Tonooka and N Kikuchi, Growth of b-axis oriented VO2 thin films on glass substrates using ZnO buffer layer, Appl. Surf. Sci. 256 (2010) 6834-6837.
 
[20]  M Leoni, T Confenteand P Scardi ,PM2K: a flexible program implementing Whole Powder Pattern Modelling, Z. Kristallogr. Suppl., 23 (2006) 249-254.
 
[21]  P Scardi and M Leoni, whole powder pattern modelling, Acta. Cryst. A58 (2002) 190-200.
 
[22]  Li Jian and J Dho, anomalous optical switching and thermal hysteresis behaviors of VO2 films on glass substrate, Applied. Phys. Lett. 99 (2011) 231909.
 
[23]  A Kaushal, N Choudhary, N Kaur and D Kaur, VO2-WO3 nanocomposite thin films synthesized by pulsed laser deposition technique, Appl. Surf. Sci. 257 (2011) 8937- 8944.
 
[24]  S Lu, L Hou and F Gan Surface analysis and phase transition of gel-derived VO2 thin films, Thin Solid Films, 353 (1999) 40-44.
 
[25]  X-J Wang, C-J Liang, K-P Guan, D-H Li, Y-X Nie et al, Surface oxidation of vanadium dioxide ¯lms prepared by radio frequency magnetron sputtering, Chinese. Phys. B. 17 (2008) 3514.
 
[26]  P Gillet, A Le Cleach, and M Madon High-temperature raman spectroscopy of SiO2 and GeO2 Polymorphs: Anharmonicity and thermodynamic properties at high-temperaturesJ. Geophys. Res. 95 (1990) 21635-21655.
 
[27]  RJ Hemley, pressure dependence of Raman spectra of SiO2 polymorphs: alpha-quartz, coesite and stishovite, in: MH Manghnani, Y Syono (Eds.). High-pressure Research in Mineral Physics, Tokyo/Washington DC: Terra Scientific Publishing Co and AGU. (1987) 347-360.
 
[28]  C Cheng, K Liu, B Xiang, J Suh and J Wu, ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation, Appl. Phys. Lett. 100 (2012) 103111.
 
[29]  JC Parker, raman scattering from VO2 single crystals: A study of the effects of surface oxidation, Phys. Rev. B. 42 (1990) 3164.
 
[30]  JF Pócza, Á. Barna, PB Barna, I Pozsgai, G Radnóczi: in-situ electron microscopy of thin film growth, Proc. 6th Int. Vacuum Congress, Kyoto (1974), Jap. Journal of Applied Physics, Supplement 2, (1974) Part 1, 525-532.
 
[31]  P.B. Barna, G. Radnóczi, F.M. Reicha: Surface growth topography of grain boundaries in Al thin films, Vacuum 38. (1988), 527-532
 
[32]  M. Menyhard, L. Uray, Grain boundary segregation produced by grain boundary movement, Scripta Metall. 17 (1983), p.1195
 
[33]  L Uray and M Menyhard, the segregation of iron in tungsten, Phys. Status. Solidi. A 84 (1984) 65-72.
 
[34]  PB Barna, M Adamik, growth mechanisms of polycrystalline thin films, in: FC Matacotta, G Ottaviani (Eds.), Science and Technology of Thin Films. Singapore: World Scientific Publications. (1995).