American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2017, 5(2), 68-71
DOI: 10.12691/ajn-5-2-4
Open AccessArticle

Optical and Electrical Modeling of a hybrid Solar Cell based on a Mesostructured Perovskite CH3NH3PbI3: Influence of the Depth and Thickness of the Photoactive Layer

Abdoulaye Ndiaye Dione1, , Sossé Ndiaye1, El Hadji Oumar Gueye1, Allé Dioum1, Alioune Aidara Diouf1, Mahamat Bichara Abderaman1, Balla Diop Ngom1 and Aboubaker Chedikh Beye1

1Department of Physics (Laboratory of Solid State Physics and Materials Sciences), Cheikh Anta Diop University of Dakar, Dakar, Senegal

Pub. Date: December 22, 2017

Cite this paper:
Abdoulaye Ndiaye Dione, Sossé Ndiaye, El Hadji Oumar Gueye, Allé Dioum, Alioune Aidara Diouf, Mahamat Bichara Abderaman, Balla Diop Ngom and Aboubaker Chedikh Beye. Optical and Electrical Modeling of a hybrid Solar Cell based on a Mesostructured Perovskite CH3NH3PbI3: Influence of the Depth and Thickness of the Photoactive Layer. American Journal of Nanomaterials. 2017; 5(2):68-71. doi: 10.12691/ajn-5-2-4


In this paper we propose an analytical model to investigate the influence of the depth and thickness of the composite photoactive layer, on the optical and electrical properties of the hybrid solar cell based on the mesostructured perovskite CH3NH3PbI3. Using Bruggeman theory, energy conservation equation and charge density continuity equation, allowed us to determine the optical generation rate and the short-circuit current density. The results obtained show that the optical generation rate decreases according to the depth. We also see that this optical generation rate increases with the thickness of the photoactive layer. For the short-circuit current density, we note that it increases with the thickness and there is an optimum thickness at 850 nm. Our results agree with those found in literature.

mesostructured perovskite CH3NH3PbI3 solar cell optical and electrical parameters bruggeman theory conservation equation continuity equation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Wolf, S.D., Holovsky, J., Moon, S.J., Löper, P., Niesen, B., Ledinsky,M., Haug, F.J., Yum, J.H and Ballif, C, “Organometallic Halide Perovskites: Sharp Optical Absorption Edge and its Relation to Photovoltaic Performance”, Physical Chemistry Letters., 5(6).1035-1039. March. 2014.
[2]  Fan, J., Jia, B and Gu, M, “Perovskite-based low-cost and high-efficiency hybrid halide solar cells”, Photonics Reseach, 2(5). 111-120. October.2014.
[3]  Sun, S., Salim, T., Mathews, N., Duchamp, M., Boothroyd, C., Xing, G., Sumbce, T.C and Lam, Y.M, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells”, Energy Environ. Sci., (7). 399-407. October.2014.
[4]  Park, N.G, “Perovskite solar cells: an emerging photovoltaic technology”, Materials Today, 00(00).August.2014.
[5]  Kojima, A., Teshima, K., Shirai, Y and Miyasaka, T, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, American Chemical Society, 131. 6050-6051. April.2009.
[6]  Liu, D., and Kelly, T.L., “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques”, Nature Photonics, 8. 133-138. December. 2013.
[7]  Bi, D., Yang, L., Boschloo, G., Hagfeldt, A and Johansson, E.M.J, “Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite Sensitized Mesoscopic Solar Cells”, Physical Chemistry Letters, 4 (9). 1532-1536. April. 2013.
[8]  Boix, P.P., Nonomura, K., Mathews, N and Mhaisalkar, S.G, “Current progress and future perspectives for organic/inorganic perovskite solar cells”, Materials Today, 17(1). 16-23. January-February. 2014.
[9]  Zhu, L., Shi, J., Lv, S., Yang, Y., Xu, X., Xu, Y., Xiao, J., Wu, H., Luo, Y., Li, D and Meng, Q, “Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells”, Nano Energy , 15.540-548. July.2015.
[10]  Brenner, T.M., Egger, D.A., Kronik, L., Hodes, G and Cahen, D, “Hybrid organic–inorganic perovskites:low-cost semiconductors with intriguing charge-transport properties”, Nature Reviews Materials, (15007). January. 2016.
[11]  Foster, J.M., Snaith, H.J., Leijtens, T and Richardson, G, “A model for the operation of perovskite based hybrid solar cells: formulation, analysis and comparison to experiment”, SIAM Journal on Applied Mathematics, 74(6). 1935-1966. November. 2014.
[12]  Sun, X., Asadpour, R., Nie, W., Mohite, A.D and Alam, M.A, “A Physics-Based Analytical Model for Perovskite Solar Cells,” IEEE Journal of Photovoltaics, 5(5). 1389-1394. July. 2015.
[13]  Palik, E.D and Ghosh, .G, Handbook of Optical Constants of Solids, Academic Press, Orlando, 1985, 577-580.
[14]  S.Berthier and J. Lafait. “Modelisation des proprietes optiques des milieux inhomogenes a structure complexe”, Journal de Physique Colloques, 42 (1), Jan 1981.
[15]  A.M.Jayannavar and N.Kumar, “Generalization of Bruggeman's unsymmetrical effective medium theory to a three-component composite”, Physical Review, 44(21), December 1991.
[16]  M.Louge and M.Opie, “Measurements of the effective dielectric permittivity of suspensions”, Powder Technology, 62(1), July 1990.
[17]  P. Mallet, “Diffusion électromagnétique par des matériaux hétérogènes rugueux: homogénéisation et étude du couplage”, Thèse de doctorat. Aix-Marseille 3, France, 2006.
[18]  S. Orlowska, “Conception et prédiction des caractéristiques diélectriques des matériaux composites à deux et trois phases par la modélisation et la validation expérimentale”, Thèse de doctorat, Ecole Centrale De Lyon, France, 2003.
[19]  Gueye, E.H.O., Tall, P.D., Ndao, C.B., Dioum, A., Dione, A.N and Beye, A.C, “An Optical and Electrical Modeling of Dye Sensitized Solar Cell: Influence of the Thickness of the Photoactive Layer”, American Journal of Modeling and Optimization, 4(1). 13-18. 2016.
[20]  D. Allé, “Etude en 3D de cellules photoactives organiques bicouches composées de phthalocyanine de cuivre (CuPc) et de fullerene (C60): Influence de la dissociation des excitons aux interfaces actives”, thèse de doctorat de troisième cycle, Université Cheikh Anta Diop de Dakar, Sénégal, 2010.
[21]  L. Jylhä and A. Sihvola, “Equation for the effective permittivity of particle-filled composites for material design applications”, Journal of Physics D: Applied Physics, 40 (16).4966-4973. August. 2007.
[22]  Zhao, Y., Nardes, A.M and Zhu, K, “Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length”, Physical Chemistry Letters, 5(3) 490-494. January.2014.
[23]  D’Innocenzo, V., Grancini, G., Alcocer, M. J., Kandada, A. R. S., Stranks, S. D., Lee, M. M and Petrozza, A, “Excitons versus free charges in organo-lead tri-halide perovskites”, Nature Communications, 5. 3586. April.2014.
[24]  Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N and Snaith, H. J, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science, 338(6107). 643-647. Novembre. 2012.
[25]  Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L and Huang, J, “Electron-hole diffusion lengths >175 m in solution grown CH3NH3PbI3 single crystals”, Science, 347(6225). 967-970. February .2015.
[26]  Gonzalez-Pedro, V., Juarez-Perez, E. J., Arsyad, W.-S., Barea, E. M., Fabregat-Santiago, F., Mora-Sero, I and Bisquert, J, “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells”, Nano Letters, 14(2). 888-893. January. 2014.