American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2017, 5(1), 31-42
DOI: 10.12691/ajn-5-1-5
Open AccessArticle

Antibacterial Applications of Anatase TiO2 Nanoparticle

Hani A. Alhadrami1, 2, Aisha Baqasi1, Javed Iqbal3, Raniyah A.M. Shoudri1, Ahmad Mohammad Ashshi4, Esam I. Azhar1, 5, Faten Al-Hazmi6, Ahmed Al-Ghamdi6 and S. Wageh6, 7,

1Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, P. O. Box 80402 Jeddah 21589, Saudi Arabia

2Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, P. O. Box 80402 Jeddah 21589, Saudi Arabia;Center of Innovation in Personalized Medicine, King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80402, Jeddah, 21589, Kingdom of Saudi Arabia

3Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudia Arabia

4Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7607, Makkah, Saudi Arabia

5Special Infectious Agents Unit, King Fahd Medical Research Centre, King Abdulaziz University, P. O. Box 80402 Jeddah 21589, Saudi Arabia

6Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

7Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt

Pub. Date: June 30, 2017

Cite this paper:
Hani A. Alhadrami, Aisha Baqasi, Javed Iqbal, Raniyah A.M. Shoudri, Ahmad Mohammad Ashshi, Esam I. Azhar, Faten Al-Hazmi, Ahmed Al-Ghamdi and S. Wageh. Antibacterial Applications of Anatase TiO2 Nanoparticle. American Journal of Nanomaterials. 2017; 5(1):31-42. doi: 10.12691/ajn-5-1-5


Many methods have been used for the preparation of nanostructured metal oxides. Here we report the synthesis of TiO2 nanoparticles by facile hydrothermal process by varying the concentration of the precursor and reaction temperature while keeping the process time constant. Morphological, structural and optical studies were carried out by scanning electron microscopy equipped with energy dispersive spectroscopy, X-ray powder diffraction spectroscopy and VU-Vis-NIR spectroscopy. Morphological and compositional analysis reveal that the prepared nanoparticles are highly pure with an approximate average particle size 5-15nm. XRD studies showed their crystalline structure and the sizes around 5 nm, while the optical absorption studies in the photon wavelength range 300-600 nm reveal that the strong absorbance peak is positioned at around 3.5 eV nm whereas visible energy is almost transparent for the materials. Finally, the antibacterial effect of TiO2 nanoparticles has been studied. Plating technique was used to determine lowest concentration that prevent or inhibit growth of bacteria. This technique of TiO2 nanoparticle was used against most common organisms which cause wound infection including: MRSA, E. coli and Pseudomonas aeruginosa. Different concentrations of TiO2 nanoparticles were used 100 μg/ml, 200 μg/ml, 400 μg/ml, 600 μg/ml and 800 μg/ml. Inhibition of bacteria was different for prepared TiO2 samples due to different concentration of the precursors and synthesis temperature.

TiO2 nanoparticles crystal structure antibacterial

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 12


[1]  A. L. Linsebigler, G. Lu, and J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem Rev, vol. 95, pp. 735-758, May1995.
[2]  C. Aprile, E. Gobechiya, J. A. Martens, and P. P. Pescarmona, “New mesoporous composites of gallia nanoparticles: high-throughput synthesis and catalytic application,” Chemical Communications, vol. 46, pp. 7712-7714, Sep 2010.
[3]  Manoj A. Lazar and S. V. a. S. S. Nair, “Photocatalytic Water Treatment by Titanium Dioxide,” MDPI, vol. 2 (4): 572-601. 2012.
[4]  S. M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, and K. Adibkia, “Antimicrobial activity of the metals and metal oxide nanoparticles,” Mater Sci Eng C Mater Biol Appl, vol. 44, pp. 278-84, Nov 2014.
[5]  P. Singh, M. Abdullah, and S. Ikram, “Role of Nanomaterials and their Applications as Photo-catalyst and Senors: A Review,” Nano Research & Applications, vol. 2:10, Dec 2015.
[6]  D. F. Ollis and H. Al-Ekabi, Photocatalytic purification and treatment of water and air: proceedings of the 1st International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, Elsevier Science Ltd, 8-13.
[7]  S. Wageh, “Light Emitting Devices Based on CdSe Nanoparticles Capped With Mercaptoacetic Acid,” IEEE Journal of Quantum Electronics, vol. 50, pp. 1-8, Sep 2014.
[8]  X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nat Biotechnol, vol. 21, pp. 41-6, Jan 2003.
[9]  J. D. Fortner, D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L. B. Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, and J. B. Hughes, “C60 in Water: Nanocrystal Formation and Microbial Response,” Environmental Science & Technology, vol. 39, pp. 4307-4316, Apr 2005.
[10]  A. Chwalibog, E. Sawosz, A. Hotowy, J. Szeliga, S. Mitura, K. Mitura, M. Grodzik, P. Orlowski, and A. Sokolowska, “Visualization of interaction between inorganic nanoparticles and bacteria or fungi,” Int J Nanomedicine, vol. 5, pp. 1085-1094, Dec 2010.
[11]  E. C. Wang and A. Z. Wang, “Nanoparticles and their applications in cell and molecular biology,” Integr Biol (Camb), vol. 6, pp. 9-26, Jan 2014.
[12]  M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem Rev, vol. 104, pp. 293-346, Jan 2004.
[13]  A. N. Banerjee, “The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2Nanotechnology, science and applications, vol. 4, pp. 35-65, Feb 2011.
[14]  N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, and R. Hazan, “Alternative antimicrobial approach: nano-antimicrobial materials,” Evidence-Based Complementary and Alternative Medicine, vol. 2015, Mar 2015.
[15]  N. Bahadur, K. Jain, R. Pasricha, and S. Chand, “Selective gas sensing response from different loading of Ag in sol–gel mesoporous titania powders,” Sensors and Actuators B: Chemical, vol. 159, pp. 112-120, Jun 2011.
[16]  S. Mahshid, M. S. Ghamsari, M. Askari, N. Afshar, and S. Lahuti, “Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution,” Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 9, pp. 65-68, Jul 2006.
[17]  P. Anandgaonker, G. Kulkarni, S. Gaikwad, and A. Rajbhoj, “Synthesis of TiO2 nanoparticles by electrochemical method and their antibacterial application,” Arabian Journal of Chemistry, Jan 2015.
[18]  X. Shen, J. Zhang, and B. Tian, “Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile,” Journal of hazardous materials, vol. 192, pp. 651-657, Aug 2011.
[19]  S. Kasap, H. Tel, and S. Piskin, “Preparation of TiO2 nanoparticles by sonochemical method, isotherm, thermodynamic and kinetic studies on the sorption of strontium,” Journal of Radioanalytical and Nuclear Chemistry, vol. 289, pp. 489-495, Aug 2011.
[20]  S. Samal, D.-W. Kim, K.-S. Kim, and D.-W. Park, “Direct synthesis of TiO2 nanoparticles by using the solid-state precursor TiH2 powder in a thermal plasma reactor,” Chemical Engineering Research and Design, vol. 90, pp. 1074-1081, Aug 2012.
[21]  K. Ding, Z. Miao, Z. Liu, Z. Zhang, B. Han, G. An, S. Miao, and Y. Xie, “Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process,” Journal of the American Chemical Society, vol. 129, pp. 6362-6363, May 2007.
[22]  M. Zarei, A. Jamnejad, and E. Khajehali, “Antibacterial effect of silver nanoparticles against four foodborne pathogens,” Jundishapur Journal of Microbiology, vol. 7, Jan 2014.
[23]  M. A. Vetten, C. S. Yah, T. Singh, and M. Gulumian, “Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 10, pp. 1391-1399, Mar 2014.
[24]  B. Fritz, D. K. Walker, D. Goveia, A. E. Parker, and D. M. Goeres, “Evaluation of Petrifilm™ Aerobic Count Plates as an Equivalent Alternative to Drop Plating on R2A Agar Plates in a Biofilm Disinfectant Efficacy Test,” Current microbiology, vol. 70, pp. 450-456, Mar 2015.
[25]  M. Ng, S. B. Epstein, M. T. Callahan, B. O. Piotrowski, G. L. Simon, A. D. Roberts, J. F. Keiser, and J. B. Kaplan, “Induction of MRSA biofilm by low-dose β-lactam antibiotics: specificity, prevalence and dose-response effects,” Dose-Response, vol. 12, pp. dose-response. 13-021, Jan 2014.
[26]  M. D. Rolfe, C. J. Rice, S. Lucchini, C. Pin, A. Thompson, A. D. Cameron, M. Alston, M. F. Stringer, R. P. Betts, and J. Baranyi, “Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation,” Journal of bacteriology, vol. 194, pp. 686-701, Feb 2012.
[27]  J. M. N. Llorens, A. Tormo, and E. Martínez-García, “Stationary phase in gram-negative bacteria,” FEMS microbiology reviews, vol. 34, pp. 476-495, Jun 2010.
[28]  N. V. Pletneva, V. Z. Pletnev, K. S. Sarkisyan, D. A. Gorbachev, E. S. Egorov, A. S. Mishin, K. A. Lukyanov, Z. Dauter, and S. Pletnev, “Crystal structure of phototoxic orange fluorescent proteins with a tryptophan-based chromophore,” PloS one, vol. 10, p. e0145740, Dec 2015.
[29]  L. Helmus, R. K. Hanson, D. Thornton, K. M. Babchishin, and A. J. Harris, “Absolute recidivism rates predicted by Static-99R and Static-2002R sex offender risk assessment tools vary across samples a meta-analysis,” Criminal justice and behavior, vol. 39, pp. 1148-1171, May 2012.
[30]  S.-H. Kim, H.-S. Lee, D.-S. Ryu, S.-J. Choi, and D.-S. Lee, “Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli,” Korean J. Microbiol. Biotechnol, vol. 39, pp. 77-85, Fep 2011.
[31]  S. Valencia, J. M. Marín, and G. Restrepo, “Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment,” Open Materials Science Journal, vol. 4, pp. 9-14, Apr 2010.
[32]  M. A. Islam, M. J. Haither, I. Khan, and M. Islam, “Optical and Structura l Characterization of TiO2 Nanoparticles,” IOSR J. Electr. Electron. Eng., vol. 3 (2), PP 18-24, Nov.-Dec 2012.
[33]  T. Matsumoto, J.-i. Suzuki, M. Ohnuma, Y. Kanemitsu, and Y. Masumoto, “Evidence of quantum size effect in nanocrystalline silicon by optical absorption,” Physical review B, vol. 63, p. 195322, May 2001.
[34]  L. Clément, C. Hurel, and N. Marmier, “Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants–effects of size and crystalline structure,” Chemosphere, vol. 90, pp. 1083-1090, Jan 2013.