American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2016, 4(3), 63-69
DOI: 10.12691/ajn-4-3-3
Open AccessArticle

Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region

A Sambou1, B D Ngom1, , L Gomis1 and A C Beye1

1Laboratoire de Photonique et de Nano-Fabrication, Faculté des sciences et Techniques Université Cheikh Anta Diop de Dakar (UCAD) B.P. 25114 Dakar-Fann Dakar, Senegal

Pub. Date: December 21, 2016

Cite this paper:
A Sambou, B D Ngom, L Gomis and A C Beye. Turnability of the Plasmonic Response of the Gold Nanoparticles in Infrared Region. American Journal of Nanomaterials. 2016; 4(3):63-69. doi: 10.12691/ajn-4-3-3


We report on the modulation of the optical properties namely the Surface Plasmon Resonance (SPR) of gold nanoparticles core-shell as function of the surrounding medium (water, ethanol). We have study two different combinations (1) silica thin film coating gold nanospheres and (2) gold thin film coating silica nanoparticles. The optical model used is based on Mie theory by considering spherical gold nanoparticles core-shell and the simulation is done using Matlab program. The results show an important influence of the surrounding medium and the size of the core as well as the shell thickness, on the optical properties with a redshift of the Surface Plasmon Resonance (SPR). By using Mie theory and Drude model for the simulation of the Surface Plasmon Resonance model of spherical nanoparticles showed that for the control of the Surface Plasmon Resonance of the gold thin film coating silica nanoparticles it is important to considered three parameters (i) the size of core (ii) the surrounding medium and (iii) shell thickness, which enable the turning of the SPR through the near infrared; where as gold nanosphere coated by silica results has a maximum wavelength at 530 nm, this Plasmon peak corresponding a R1/d ratio of 1.6. Thus, this work enabled optimizing core-shell structure with well-controlled sizes for biomedical application.

Nanospheres particles Nanospheres shell thickness Surface Plasmon Resonance

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  S. Eibner, R. A. O. Jaime, B. Lamien, R. Basto, H. R. B. Orlande, O. Fudym, Effet photo-thermique de l’inclusion de nanoparticules dans des matériaux fantômes de milieux biologiques.
[2]  A. Moores and F. Goettmann, New J. Chem., 30 (2006). 1121-1132.
[3]  P. Tuersun, Optik 127 (2016). 3466-3470.
[4]  C. Noguez J. Phys. Chem. C 111 (2007). 3806-3819.
[5]  P. Chekuri, E. S. Glazer, S. A. Curley, Advanced Drug Delivery Review, 62 (2010). 339-345.
[6]  S. Soulé, J. Allouche, J-C. Dupin, H. Martinez, Micropoeous and Mesoporous Materials 171 (2013). 72-77.
[7]  L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas and J. L. West, Proceedings of the National Academy of Sciences USA, 100 (2003). 13549-13554.
[8]  C. Wu, C. Yu and M. Chu, International Journal of Nanomedicine 6 (2011). 807-813.
[9]  M. T. Delapierre, J. Mohamed, S. Mornet, E. Duguet, S. Ravaine, Gold Bulletin (2008). 195-207.
[10]  C. Graf and A. V Blaaderen, Langmuir 18 (2002). 524-534.
[11]  V. V. Apyari, S. G. Dmitrienko, Y. A. Zolotov, Sensors and Actuators B 188 (2013). 1109-1115.
[12]  M. J. Ko, Adv. Mater. Opt. Electron, 8 (1998). 173-180.
[13]  N. G. Khlebtsov, L. A. Dykman, journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010). 1-35.
[14]  J. Oh, H. Yoon and J. Park, Biomed Eng Lett 3 (2013). 67-73.
[15]  P. Mulvaney, L. M. Liz-Marzan, M. Giersig and T. Ung, J. Mater. Chem., 10 (2000). 1259-1270.
[16]  S. Link and M. El-Sayed, J. Phys. Chem. B 103 (1999). 4212-4217.
[17]  A. S. Iglesias, I. P. Santos, J. P. Juste, B. R. Gonzalez, F.J. G. de Abajo and L. M.L. Marzan, ADVANCED MATERIALS 18 (2006). 2529-2534.
[18]  H. Horvath, Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009). 787-799.
[19]  M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar and R. L Whetten, B 101 (1997). 3706-3712.
[20]  P. B. Johnson and R. W. Christy, PHYSICAL REVIEW B 6 (1972). 4370-4379.
[21]  M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., And C. A. Ward, Applied optics 22 (1983). 1099-1120.
[22]  E. Palik, Handbook of Optical Constants of Solids Vol I, Academic Press, Orlando, pp. 759.
[23]  G. Weng, J. Li, J. Zhu and J. Zhao, Colloids and Surfaces A: Physicochem. Eng. Aspects 369 (2010). 253-259.
[24]  T. A. Erickson and J. W. Tunnell, Gold Nanoshell in Biomedical Applications.
[25]  B. R. Cooper, H. Ehrenreich and H. R. Philipp, Phys. Re 138 (1965). 494-507.
[26]  S. Berthier and J. Lafait, J. Physique 47 (1986). 249-257.
[27]  P. G. Etchegoin, E. C. Le Ru and M. Meyer, J. Chem. Phys. 125 (2006). 164705.
[28]  D. Rioux, S. Vallières, S. Besner, P. Munoz, E. Mazur and M. Meunier, Adv. Optical Mater (2013). 1-7.
[29]  M. Vallet-Regi and F. Balas, Open Biomedical Engineering Journal 2 (2008). 1-9.
[30]  A. Akbarzadeh, D. Zare, A. Farhangi, M. R. Mehrabi, D. Norouzian, American Journal of Applied Sciences 6 (2009). 691-695.
[31]  R. G. Chaudhuri and S. Paria, CHEMICAL REVIEWS 112 (2012). 2373-2433.
[32]  H. Zhang, DR Dunphy, X. Jiang, H. Meng, B. Sun, D. Tarn, M. Xue, X. Wang, S. Ling, Z. Ji, R. Li, FL. Garcia, J. Yang, ML. kirk, T. Xia, JL. Zink, A. Nel, CJ. Brinker, J AM Chem Soc. 134 (2012). 15790-15804.
[33]  Y. MORIGUCHI, X. MENG, K. FUJITA, S. MURAI and K. TANAKA, J. Jpn. Soc. Powder Metallurgy 60 (2012). 49-54.
[34]  B. Sadtler and A. Wei, CHEM. COMMUN (2002). 1604-1605.
[35]  S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas, Chem. Phys. Lett 288 (1998). 243.
[36]  C. Loo, A. Lin, L. Hirsch, M-H. Lee, J. Barton, N. Halas, J. West and R. Drezek, Technology in Cancer Research & Treatment 3 (2004). 33-40.