American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: http://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2016, 4(2), 39-43
DOI: 10.12691/ajn-4-2-2
Open AccessArticle

From Nanoscale to Macroscale: Applications of Nanotechnology to Production of Bulk Ultra-Strong Materials

Robert Clark1,

1Department of Mathematics, Widener University, Chester, United States

Pub. Date: August 18, 2016

Cite this paper:
Robert Clark. From Nanoscale to Macroscale: Applications of Nanotechnology to Production of Bulk Ultra-Strong Materials. American Journal of Nanomaterials. 2016; 4(2):39-43. doi: 10.12691/ajn-4-2-2

Abstract

Carbon nanotubes have been famous since their discovery twenty years ago for their remarkable physical properties, from strength a hundred times higher than steel, to electrical current capacity a 1,000 times higher than copper. But so far they have only been produced at most up to centimeter lengths. Here are presented some proposals to combine the nanotubes in such a way to get arbitrarily long lengths while maintaining their extraordinary physical properties.

Keywords:
carbon nanotubes diamonds nanotube-diamond composites space elevator

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie Materials Science and Engineering, A334 (2002) p. 173-178.
 
[2]  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Bei Peng, Mark Locascio, Peter Zapol, Shuyou Li, Steven L. Mielke, George C. Schatz & Horacio D. Espinosa. Nature Nanotechnology 3, 626-631 (2008).
 
[3]  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone Science, vol. 321, 18 July 2008, p. 385-388.
 
[4]  Direct Synthesis of Long Single-Walled Carbon Nanotube Strands. H.W. Zhu,. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P.M. Ajayan Science, Vol 296, Issue 5569, 884-886 , 3 May 2002.
 
[5]  Pulling nanotubes makes thread. October 30/November 6, 2002 http://www.trnmag.com/Stories/2002/103002/Pulling_nanotubes_makes_thread_103002.html.
 
[6]  Tensile tests of ropes of very long aligned multiwall carbon nanotubes. Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, and D. L. Zhang Appl. Phys. Lett. 74, 3152 (1999) 24 May 1999.
 
[7]  Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes. F. Li, H. M. Cheng, S. Bai, G. Su, M. S. Dresselhaus Applied Physics Letters, 77, p. 3161 (2000).
 
[8]  Strong Carbon-Nanotube Fibers Spun from Long Carbon-Nanotube Arrays. Xiefei Zhang, Qingwen Li, Yi Tu, Yuan Li, James Y. Coulter, Lianxi Zheng, Yonghao Zhao, Qianxi Jia, Dean E. Peterson, and Yuntian Zhu Small, 2007, 3, No. 2, 244-248.
 
[9]  The Study of Knot Performance http://www.allaboutknots.com/html/8_strength.htm.
 
[10]  Knot Break Strength vs Rope Break Strength. http://www.caves.org/section/vertical/nh/50/knotrope.html.
 
[11]  Carbon nanotubes. http://www.3rdtech.com/carbon_nanotubes.htm.
 
[12]  Bending and buckling of carbon nanotubes under large strain. M. R. Falvo, G.J. Clary, R.M. Taylor II, V. Chi, F.P. Brooks Jr., S. Washburn and R. Superfine Nature, 389, p. 582-584. (1997).
 
[13]  Nanomanipulation experiments exploring frictional and mechanical properties of carbon nanotubes. M. R. Falvo, G. Clary, A. Helser, S. Paulson, R. M. Taylor II, V. Chi, F. P. Brooks Jr, S. Washburn, R. Superfine Microscopy and Microanalysis, 4, p. 504-512. (1998).
 
[14]  Nanotube Nanotweezers. Science, Vol. 286, No. 5447, p. 2148-2150, 10 December 1999.
 
[15]  Fabrication and actuation of customized nanotweezers with a 25 nm gap. Nanotechnology, 12, p. 331-335, 2001.
 
[16]  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology, 10, p. 244-252, 1999.
 
[17]  New Nanomaterial, 'NanoBuds,' Combines Fullerenes and Nanotubes. March 30th, 2007 By Laura Mgrdichian in Nanotechnology / Materials. http://www.physorg.com/news94478341.html.
 
[18]  Water-filled single-wall carbon nanotubes as molecular nanovalves. Yutaka Maniwa, Kazuyuki Matsuda, Haruka Kyakuno, Syunsuke Ogasawara, Toshihide Hibi, Hiroaki Kadowaki, Shinzo Suzuki, Yohji Achiba & Hiromichi Kataura. Nature Materials 6, 135-141 (2007).
 
[19]  Ring Closure of Carbon Nanotubes.Masahito Sano, Ayumi Kamino, Junko Okamura, Seiji Shinkai Science, Vol. 293, No. 5533, p. 1299-1301, 17 August 2001.
 
[20]  A facile sulfur vapor assisted reaction method to grow boron nitride nanorings at relative low temperature. XIAOPENG HAO; YONGZHONG WU; JIE ZHAN; JIAXIANG YANG; XIANGANG XU; MINHUA JIANG The Journal of Physical Chemistry. B, 2005, vol. 109, no. 41, pp. 19188-19190.
 
[21]  anorings: Seamless Circular Nanostructures Could be Sensors, Resonators and Transducers for Nanoelectronic and Biotechnology Applications. February 26, 2004. http://gtresearchnews.gatech.edu/newsrelease/nanorings.htm.
 
[22]  Synthesis of a Self-Assembled Hybrid of Ultrananocrystalline Diamond and Carbon Nanotubes. X. Xiao, J. W. Elam , S. Trasobares, O. Auciello, J. A. Carlisle Advanced Materials, Volume 17, Issue 12, 2005, Pages 1496-1500.
 
[23]  Growth of nanodiamond/carbon-nanotube composites with hot filament chemical vapor deposition. Nagraj Shankar, Nick G. Glumac, Min-Feng Yu, S.P. Vanka Diamond & Related Materials 17 (2008) 79-83.
 
[24]  Reinforcement of single-walled carbon nanotube bundles by intertube bridging. A.Kis, G. Csányi, J.-P. Salvetat, Thien-Nga Lee, E. Couteau, A. J. Kulik, W. Benoit, J. Brugger & L. Forró Nature Materials, 3, p. 153-157 (2004).
 
[25]  Strong Bundles. P.M. Ajayan, F. Banhart Nature Materials, vol. 3, p. 135-136, March 2004.
 
[26]  Modeling of carbon nanotube clamping in tensile tests. Chunyu Li, Rodney S. Ruoff, Tsu-Wei Chou. Composites Science and Technology 65 (2005) 2407-2415.
 
[27]  Measured properties of carbon nanotubes match theoretical predictions. August 14, 2008. http://www.nanowerk.com/spotlight/spotid=6743.php.
 
[28]  Electron beam welds nanotubes. By Ted Smalley Bowen, Technology Research News August 1/8, 2001. http://www.trnmag.com/Stories/080101/Electron_beam_welds_nanotubes_080101.html.
 
[29]  Tensile Test of Carbon Nanotube using Manipulator in Scanning Electron Microscope. Seung Hoon Nahm April 3-4, 2006 The 3rd Korea-U.S. NanoForum.
 
[30]  Connection of macro-sized double-walled carbon nanotube strands by current-assisted laser irradiation. Tao Gong, Yong Zhang, Wenjin Liu, Jinquan Wei, Kunlin Wang, Dehai Wu, and Minlin Zhong Journal of Laser Applications - May 2008 - Volume 20, Issue 2, pp. 122-126.
 
[31]  Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. Guowen Meng, Yung Joon Jung, Anyuan Cao, Robert Vajtai,, and Pulickel M. Ajayan PNAS May 17, 2005 vol. 102, no. 20, p. 7074-7078.
 
[32]  Tether Strength Competition. https://web.archive.org/web/20120111050720/http://www.spaceward.org/elevator2010-ts.