American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: http://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2015, 3(1), 28-39
DOI: 10.12691/ajn-3-1-4
Open AccessArticle

Synthesis and Mechanical Characterisation of Aluminium-Copper-Alumina Nano Composites Powder Embedded in Glass/Epoxy Laminates

P K Dash1, , Prof. B. S. Murty2 and R B Karthik Aamanchi3

1Department of Aeronautical Engineering, IARE, Hyderabad, Telangana

2Metallurgy & Material Sciences Department, IIT Madras, Chennai, TamilNadu

3Geetam University, Hyderabad, Telangana

Pub. Date: July 15, 2015

Cite this paper:
P K Dash, Prof. B. S. Murty and R B Karthik Aamanchi. Synthesis and Mechanical Characterisation of Aluminium-Copper-Alumina Nano Composites Powder Embedded in Glass/Epoxy Laminates. American Journal of Nanomaterials. 2015; 3(1):28-39. doi: 10.12691/ajn-3-1-4

Abstract

This paper presents the synthesis and mechanical properties study of Aluminum-Copper nanocomposite powders with variation in volume percentages of alumina. The powders were synthesized using mechanical alloying (high energy ball milling technique). Samples of size 2010 mm were produced from nanocomposite powders by spark plasma sintering technique and conventional sintering method. The microstructural verifications were carried out using X-ray diffraction. Transition electron microscopy were used to determine the phases formed and size of the particles. Thermal analysis and hardness of these samples were measured by conducting DSC and Vickers’s Hardness Test. Also, the powders of ACANC were embedded into Glass/Epoxy laminates for further identification of NC powders effects on mechanical properties like tensile and compressive strength. The samples prepared using conventional sintering technique had gone through two different types of annealing before sintering and shown enhanced hardness, yield strength and increment in density. The nanocomposite embedded laminates have shown improved tensile, compression and hardness values in compare to virgin specimens.

Keywords:
Al-Cu-Alumina-Nano-Composite (ACANC) plasma sintering technique X-ray diffraction TEM DSC GFRC mechanical properties

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Durai, T. G., Das, K. and Das, S., “Synthesis and characterization of Al matrix composites reinforced by in situ alumina particulates”, Mater. Sci. Eng. A, Vol. 445-446, 2007, pp. 100-105.
 
[2]  Anđić, Z., Korać, M., Tasić, M., Kamberović, Z. and Raić, K., “Synthesis and sintering of cu-al2O3 nanocomposite powders produced by a thermochemical route”, Metalurgija Journal of Metallurgy, 2008, pp.71-81.
 
[3]  Hesabi, Z. R., Simchi, A., and Reihani, S. M. S., “Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites”, Mater Sci Eng A, Vol. 428, 2006, pp. 159-168.
 
[4]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Materials Letters Vol. 62, No. 2, 2008, pp. 282-285.
 
[5]  Mazen, A. A., and Ahmed, A. Y. “Effect of alumina additions on the mechanical behavior of PM MMC with low strength matrix”, Current Advances in Mechanical Design and Production, Vol. VII, 2000, pp. 397-406.
 
[6]  Arami, H., and Simchi, A., “Reactive milling synthesis of nanocrystalline Al–Cu/Al2O3 nanocomposite”, Mater. Sci. Eng. A, Vol. 464, No. 1-2, 2007, 225-232.
 
[7]  Yadav, T. P., Yadav, R. M., and Singh, D. P., “Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites”, Nanoscience and Nanotechnology, Vol. 2, No. 3, 2012, pp. 22-48.
 
[8]  Nayak, S.S., Kim, D.H., Pabi, S. K. and Murty, B. S., “Aluminium-based NCs by non-equilibrium processing routes”, Trans. Indian Inst. Met. Vol.59, No. 2, April 2006, pp. 193-198.
 
[9]  Oh, S. T., Sekino, T., and Niihara, K., “Fabrication and mechanical properties of 5 Vol% copper dispersed Alumina NC”, Journal of the European Ceramic society, Vol-18, 1998, pp. 31-37.
 
[10]  Feldheim, D. L. and Foss C. A. (eds) 2002 Metal nanoparticles: Synthesis, characterization and applications (Marcel Dekker Inc.).
 
[11]  Nachum, S., Fleck, N.A., Ashby, M.F., Colella, A., and Matteazzi, P., “The microstructural basis for the mechanical properties and electrical resistivity of nanocrystalline Cu–Al2O3”, Materials Science and Engineering Series A, Vol. 527, 2010, pp. 5065-5071.
 
[12]  Padmanabhan, K., “Time-temperature failure analysis of epoxies and unidirectional glass/epoxy composites in compression”, Composites, Vol. Part A 27A, 1996, pp. 585-596.
 
[13]  Orolínová, M., Ďurišin, J., Ďurišinová, K., Danková, Z. and Ďurišin, M., “Effect of Microstructure on Properties of Cu-Al2O3 Nanocomposite”, Chemical and Materials Engineering, Vol.1, No. 2, 2013, pp. 60-67.
 
[14]  Shehata, F., Abdelhameed, M., Fathy, A. and Moustafa, S. F., “Fabrication of Copper- Alumina Nanocomposites by Mechanochemical Routes”, Jr. of Nano Research, Vol. 6, 2009, pp 51-60.
 
[15]  Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A. S., Aqeeli, N. A., Laoui, T., Qutub, A. A. and Kirchner, R., “Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review”, Journal of Nanomaterials, Volume 2012, Article ID 983470, pp. 1-13.
 
[16]  Wu, J.M., Li, Z.Z., “Nanostructure composite obtained by mechanically driven reduction reactions of CuO and Aluminium powder mixture”, Journal of alloys and compounds, Vol. 299, 2000, pp. 9-16.
 
[17]  Mahapatra, A., “Fabrication and characterization of novel iron oxide/ alumina nanomaterials for environmental applications”, Ph.D Thesis, NIT, Rourkela, Odisha, 2013.
 
[18]  Koli, D. K., Agnihotri, G., and Purohit, R., “Properties and Characterization of Al-Al2O3 Composites Processed by Casting and Powder Metallurgy Routes (Review)”, International Journal of Latest Trends in Engineering and Technology (IJLTET), Vol. 2 Issue 4 July 2013, pp. 486-496.
 
[19]  Ramezani, M., and Neitzert, T., “Mechanical milling of aluminum powder using planetary ball milling process”, Jr of Achievements in Materials and Manufacturing Engineering, Vol.55, No. 2, 2012, pp. 790-798.
 
[20]  Upadhyaya, A., and Upadhyaya, G. S., “Sintering of copper-alumina composites through blending and mechanical alloying powder metallurgy routes”, Mater. Des., Vol.16, No. 1, 1995, pp. 41-45.
 
[21]  Valibeygloo, N., Khosroshahi, R. A., and Mousavian, R. T., “ Microstructural and mechanical properties of Al-4.5wt% Cu reinforced with alumina nanoparticles by stir casting method”, Int. Jr. of Mineral, Metallurgy and Materials, Vol. 20, No. 10, Oct. 2013, pp. 978-988.
 
[22]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Materials Letters Vol. 62, No. 2, 2008, pp. 282-285.
 
[23]  O'Donnell, G. and Looney, L., “Production of aluminium matrix composite components using conventional PM technology”, Mater. Sci. Eng. A, Vol. 303, No. 1-2, 2001, pp. 292-301.
 
[24]  Zebarjad, S. M., and Sajjadi, S. A., “Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method”, Materials & Design. Vol. 27, 2006, pp.684-688.
 
[25]  Ruiz-Navas, E. M., Fogagnolo, J. B., Velasco, F., Ruiz-Prieto, J. M., and Froyen, L., “One step production of aluminium matrix composite Powders by mechanical alloying”, Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 11, 2006, pp. 2114-2120.
 
[26]  Mula, S., Padhi, P., Panigrahi, S.C., Pabi, S.K., and Ghosh, S., “On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 Nanocomposite”, Materials Research Bulletin, Vol. 44, No. 1, 2009, pp 154-1160.
 
[27]  Rahimiana, M., Nader, P., and Naser, E., “Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy”, Materials Science and Engineering, Vol. A527, 2010, pp. 1031-1038.
 
[28]  Rajkovic, V., Bozic, D., and Jovanovic, M. T., “Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites”, Materials and Design, Vol. 31, 2010, pp. 1962-1970.
 
[29]  Razavi, H. Z., Hafizpour, H. R. and Simchi, R., “An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling”, Materials Science and Engineering, Vol. A454-455, 2007, pp. 89-98.
 
[30]  Razavi, S.S., Yazdani, R. and Manafi, S. A., “Effect of volume fraction and particle size of Alumina reinforcements on compaction and densification behavior of Al-Alumina NCs”, Materials and Engineering, (Article in Press).
 
[31]  Simchi, H. and Simchi, A., “Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution”, Materials Science and Engineering, Vol. Part A: 507, 2009, pp. 200-206.
 
[32]  Aboraia, M. S., Wasly, H. S., Doheim, M. A., Abdalla, G. A., and Mahmoud, A. E., “Characterization of Al/(10%Al2O3-10%ZrO2) Nanocomposite Powders Fabricated by High-Energy Ball Milling”, Int. Jr. of Eng. Res. and Appl. (IJERA), Vol. 3, Issue 3, May-Jun 2013, pp.474-482.
 
[33]  Arami, H., and Simchi, A., “Reactive milling synthesis of nanocrystalline Al–Cu/Al2O3 nanocomposite”, Mater. Sci. Eng. A, Vol. 464, No. 1-2, 2007, 225-232.
 
[34]  Olszówka-Myalska, A., Szala, J. and Cwajna, J. “Characterization of reinforcement distribution in Al/(Al2O3)p composites obtained from composite powder”, Materials Characterization, Vol. 46, No. 2-3, 2001, pp. 189-195.
 
[35]  Smagorinski, M. E., Tsantrizos, P. G., Grenier, S., Cavasin, A., Brzezinski, T. and Kim, G., “The properties and microstructure of Al-based composites reinforced with ceramic particles” Mat. Sci. and Eng. A, Vol. 244, No. 1, 1998, pp. 86-90.
 
[36]  Fogagnolo, J. B., Velasco, F., Robert, M. H., and Torralba, J. M., “Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders”, Mater Sci Eng A, Vol. 342, No. 1-2, 2003; 131-143.
 
[37]  Zebarjad, S. M., and Sajjadi, S. A., “Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time”, Materials & Design, Vol. 28, No. 7, 2007, pp. 2113-2120.
 
[38]  Shehata, F., Abdelhameed, M., Fathy, A. and Elmahdy, M., “Preparation and Characteristics of Cu-Al2O3 Nanocomposite”, Open Journal of Metal, 2011, 1, 25-33.
 
[39]  Hosseini, N., Karimzadeh, F., Abbasi, M. H and Enayati, M. H, “Tribological properties of Al6061–Al2O3 NC prepared by milling and hot pressing”, Materials and Design, Vol. 31, 2010, pp. 4777-4785.
 
[40]  Zao, F. M. and Takeda, N., “Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites”, Composites, Vol. Part A:31, 2000, pp. 1215-1224.
 
[41]  Casati, R. and Vedani, M., Metal Matrix Composites Reinforced by Nano-Particles—A Review”, Metals, Vol. 4, 2014, pp. 65-83.
 
[42]  Mostaed, E.; Saghafian, H.; Mostaed, A.; Shokuhfar, A.; Rezaie, H.R. Investigation on preparation af Al-4.5%Cu/SiCp nanocomposites powder via mechanical milling. Powder Tech. 2012, 221, 278-283.
 
[43]  Zh. Alferov and L. Esaki ed., “Nanostructures: physics and technology”, 19th International Symposium Ekaterinburg, Russia, June 20-25, 2011.
 
[44]  Koch, C.C., “The synthesis and structure of nanocrystalline materials produced by mechanical attrition”, Jr. Nanostruct. Mater., Vol. 2, 1993, pp. 109-29.
 
[45]  Woo K. D. and Lee H. B., “Fabrication of Al alloy matrix composite reinforced with subsive-sized Al2O3 particles by the in situ displacement reaction using high-energy ball-milled powder”, Materials Science and Engineering A. Vol. 449–451, 2007, pp 829-832.
 
[46]  Tavoosi, M., Karimzadeh, F., and Enayati, M. H., “Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying”, Mater. Lett., Vol. 62, 2008, pp. 282-285.
 
[47]  Wieczorek-Ciurowa, K., Oleszak, D., and Gamrat, K., “Mechanosynthesis and process characterization of some nanostructured intermetallics–ceramics composites”, Jr. Alloys Compd., Vol. 434-435, 2007, pp. 501-504.
 
[48]  Hwang, S. J., and Lee, J. H., “Mechanochemical synthesis of Cu–Al2O3 nanocomposites”, Mater. Sci. Eng. A, Vol. 405, 2005, pp. 140-146.
 
[49]  Kleiner, S., Bertocco, F., Khalid, F.A., and Beffort, O., “Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al–TiO2 system”, Materials Chemistry and Physics, Vol. 89, No. 2-3, 2005, pp. 362-366.
 
[50]  Kaczmar, J. W., and Naplocha, K., “Wear behaviour of composite materials based on 2024 Al-alloy reinforced with δ alumina fibres”, Jr. of Achievements in Materials and Manufacting Eng., Vol. 43, No. 1, 2010, pp. 88-93.