American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2015, 3(1), 22-27
DOI: 10.12691/ajn-3-1-3
Open AccessArticle

Morphological and Chemical Composition Characterization of Commercial Sepia Melanin

Agnes Mbonyiryivuze1, 2, , Z. Y. Nuru1, 2, Balla Diop Ngom1, 3, Bonex Mwakikunga1, 4, Simon Mokhotjwa Dhlamini1, 5, Eugene Park1, 6 and Malik Maaza1, 2

1UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies,

2University of South Africa, Pretoria-South Africa

3Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town, South Africa

4Laboratoire de Photonique et de nanofablication, Groupe de Physique du Solide et des Science matériaux (GPSSM), Faculté de Science et Techniques, Université Cheikh Anta Diop de Dakar(UCAD), Dakar, Sénégal

5CSIR- National Centre for Nano-Structured Materials, Pretoria, South Africa

6University of South Africa, Pretoria-South Africa;Department of Physics, Florida Research Centre, University of South Africa, Florida-South Africa

Pub. Date: June 25, 2015

Cite this paper:
Agnes Mbonyiryivuze, Z. Y. Nuru, Balla Diop Ngom, Bonex Mwakikunga, Simon Mokhotjwa Dhlamini, Eugene Park and Malik Maaza. Morphological and Chemical Composition Characterization of Commercial Sepia Melanin. American Journal of Nanomaterials. 2015; 3(1):22-27. doi: 10.12691/ajn-3-1-3


Melanins are difficult to characterize because of their intractable chemical properties and the heterogeneity in their structural features. Melanin pigments, in fact, are composed of many different types of monomeric units that are connected through strong carbon-carbon bonds. Its high insolubility and undefined chemical entities are two obstacles in its complete characterization. The morphological characterization and particle size distribution for sepia melanin by Scanning Electron Microscopy (SEM) on surface structure and Transmission Electron Microscopy (TEM) to confirm the morphology obtained from SEM was done. Both results show that Sepia melanin is formed by many aggregates agglomerated together. These aggregates are formed also by small spherical granules with different size distributions that have been determined using image-J software. The small granule diameter obtained from different TEM and SEM micrographs were 100-200nm. EDS reveals that C and O were the most abundant in sepia melanin with concentration average concentrations of about 57% and 24% respectively. The major compositions of sepia melanin are C, O, Na, Cl, while the minor are Mg, Ca, K, S and N. From TEM micrograph at high resolution, it was possible to measure the distance between polymers layers of sepia melanin using image-J software and it was 0.323 nm = 3.23 Å.

melanin sepia melanin eumelanin SEM TEM sepia officinalis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 11


[1]  S. A. Centeno and J. Shamir, “Surface enhanced Raman scattering (SERS) and FTIRcharacterization of the sepia melanin pigment used in works of art,” Journal of Molecular Structure, vol. 873, p. 149-159, 2008.
[2]  C. D. Derby, “Cephalopod ink:Production, Chemistry, Functions and applications,” Mar. Drugs, vol. 12, pp. 2700-2730, 2014.
[3]  Z. Huang, H. Lui, X. K. Chen, A. Alajlan, D. I. McLean and H. Zeng, “Raman spectroscopy of in vivo cutaneous melanin,” Journal of Biomedical Optics , vol. 9(6), p. 1198-1205, 2004.
[4]  A. R. Katritzzky, N. G. Akhmedov, S. N. Denisenko and O. V. Denisko, “1H NMR spectroscopic characterization of solutions of sepia melanin, sepia melanin free acid and human hair melanin,” Pigment Cells Res, vol. 15(2), pp. 93-97, 2002.
[5]  M. Magarelli, P. Passamonti and C. Renieri, “Purification, characterization and analysis of sepia melanin from commercial Sepia ink (Sepia officinalis),” Rev CES Med Vet Zootec, vol. 5(2), pp. 18-28, 2010.
[6]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, Vols. 33, No. 11, pp. 3788-3792, 2012.
[7]  S. Subianto, Electrochemical Synthesis of –Like Polyindolequinone, PhD. thesis,, Inorganic material research Program, the Queensland University of Technology, 2006.
[8]  K. Tarangini and S. Mishra, “Production, characterization and analysis of melanin from isolated marine pseudomonas sp. using vegetable waste.” Research Journal of Engineering Sciences, vol. 2(5), pp. 40-46, 2013.
[9]  G. DJ, Dermotology, An illustrated Colour Tex, 3 rd ed., Edinburgh:Churchill Livingstone, 2002.
[10]  G. Perna, M. Lasalvia, C. Gallo, G. Quartucci and V. Capozzi, “Vibrational characterization of synthetic eumelanin by means of raman and surface enhanced raman scattering,” The Open Surface Science Journal, vol. 5, pp. 1-8, 2013.
[11]  N. A. Alarfaj, M. A. E. Abdalla and A. M. Al-Hamza, “A Sensitive electrogenerated chemiluminescence assay for determination of melanin in natural and biological samples,” International Journal of Electrochemical Science, vol. 7, pp. 7888-7901, 2012.
[12]  S. S. Sajjan, A. O, G. B. Kulkarni, A. S. Nayak, S. B. Mashetty and T. B. Karegoudar, “Properties and functions of melanin pigment from Klebsiella sp. GSK,” Korean Journal of Microbiology and Biotechnology, vol. 41(1), p. 60-69, 2013.
[13]  M. Magarelli, Purification, characterization and photodegradation studies of modified sepia melanin Sepia (Sepia officinalis).Determination of Eumelanin content in fibers from Alpaca (Vicugna pacos), Doctoral Thesis., Macerata: University of Camerino, 2011.
[14]  D. Peruru, R. S, N. Ahmed VH, P. S. Sandeep, S. Raju, S. Nazan and S. Begum, “Isolation of eumelanin from Sepia officinalis and investigation of its antimicrobial activity by ointment formulation,” International Journal of Pharmacy, vol. 2(2), pp. 67-72, 2012.
[15]  F. Bernsmann, O. Ersen, J.-C. Voegel, E. Jan, N. A. Kotov and V. Ball, “Melanin-containing films: Growth from dopamine solutions versus layer-by-layer deposition,” ChemPhysChem, vol. 11, p. 3299-3305, 2010.
[16]  D. N. Peles, Application of photoemission electron microscopy to melanin and melanosom, Duke University, 2011.
[17]  S. Meng and E. Kaxiras, “Theoretical models of eumelanin protomolecules and their optical properties,” Biophysical Journal, vol. 94, p. 2095-2105, 2008.
[18]  C. G. Kumar, N. Sahu, G. N. Reddy, R. Prasad, N. Nagesh and K. A., “Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis,” Letters in Applied Microbiology, 2013.
[19]  G. Arun, M. Angeetha, M. Eyini and P. Gunasekaran, “Effect of copper sulphate and resorcinol on the extracellular production of melanin and laccase by Schizophyllum commune Fr. and Pleurotus cystidiosus var. Formosensis,” Indian Journal of Advances in Plant Research, vol. 1(5), pp. 55-61, 2014.
[20]  J. Reisz, The spectroscopic properties of Melanin, Doctoral Thesis, Brisbane: University of Queensland, 2006.
[21]  R. F. Egerton, “An Introduction to TEM, SEM, and AEM,” in Physical Principles, Alberta, Edmonton: University of Alberta, 2005.
[22]  S. K. Fagerland, Investigation of focused ion Beam/scanning electron microscope parameters for slice and view and Energy dispersive X-ray spectroscopy of embedded brain tissue, Master’s thesis, Norwegian University of Science and Technology, 2014.
[23]  J. B. Kortright and A. C. Thompson, “X-ray emmission energies,” in X-Ray Data Booklet, Berkeley, Center for X-ray Optics and Advanced Light Source, 2001.
[24]  D. J. Kim, K.-Y. Ju and J.-K. Lee, “The synthetic melanin nanoparticles having an excellent binding capacity,” Bull. Korean Chem. Soc, vol. 33(11), pp. 3788-3792, 2012.
[25]  J.-W. Lee, H.-B. Cho, T. Nakayama, T. Sekino, S.-I. Tanaka, K. Minato, T. Ueno, T. Suzuki, H. Suematsu, Y. Tokoi and K. Niihara, “Dye sensitized solar cells using purified squid ink nanoparticles coated on Ti O2 nanotubes/nanoparticles,” Journal of Ceramic Society of Japan, vol. 121(1), pp. 123-127, 2013.
[26]  F. Natalio, R. Andre, S. A. Pihan, M. Humanes, R. Weverd and W. Treme, “V2O5 nanowires with an intrinsic iodination activity leading to the formation of self-assembled melanin-like biopolymers,” Journal of Materials Chemistry, vol. 21, p. 11923-11929, 2011.
[27]  J. P. Bothma, Exploring the structure-propertyrelationships in eumelanin, Masters of Philosophy Thesis, School of Physical Science, Queensland University, 2008.
[28]  A. A. R. Watt, J. P. Bothma and P. Meredith, “The supramolecular structure of melanin,” Soft Matter, vol. 5, p. 3754-3760, 2009.
[29]  D. Moses, M. Mattoni, N. Slack, J. Waite and F. Zok, “Role of melanin in mechanical properties of Glycera jaws,” Acta Biomaterialia, vol. 2, p. 521-530, 2006.
[30]  C.-T. Chen, V. Ball, J. J. d. A. Gracio, M. K. Singh, V. Toniazzo, D. Ruch and M. J. Buehler, “Self-Assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design,” American Chemical Society, vol. 7(2), p. 1524-1532, 2013.
[31]  K. Glass, S. Ito, P. R. Wilby, T. Sota, A. Nakamura, R. Bowerse, J. Vinther, S. Dutta, R. Summons, D. E. G. Briggs, K. Wakamatsu and J. D. Simon, “Direct chemical evidence for eumelanin pigment from the Jurassic period,” PNAS Early Edition, pp. 1-6, 2012.