American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2015, 3(1), 1-14
DOI: 10.12691/ajn-3-1-1
Open AccessArticle

A Proper Approach on DNA Based Computer

Shyam Nandan Kumar1,

1M.Tech-Computer Science and Engineering, Lakshmi Narain College of Technology-Indore (RGPV, Bhopal), MP, India

Pub. Date: March 01, 2015

Cite this paper:
Shyam Nandan Kumar. A Proper Approach on DNA Based Computer. American Journal of Nanomaterials. 2015; 3(1):1-14. doi: 10.12691/ajn-3-1-1


Computer applications have become an essential part of our daily lives, and their use is flourishing day by day. In Conventional Computer, there are lots of limitations like: Operational Speed, Power Consumption, Parallel Processing, Hardware Size, Data Storage Limitation, etc. To emphasize the problem, the paper provides A Proper Approach on DNA Based Computer. DNA Based Computer is a nano-computer that uses DNA (DeoxyriboNucleic Acids) to store information and perform complex calculations with low power consumption in a matter of seconds. The paper proposed Design Methodology of DNA Computer. Also various features of DNA Computer and operation of its processing units are reviewed. An overview on Adleman Experiment is also included in the paper.

DNA computing biomolecular-computer design methodology hamiltonian path problem

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 11


[1]  Adleman, L. M. (1994). “Molecular computation of solutions to combinatorial problems”. Science 266 (5187): 1021-1024. doi:10.1126/science.7973651. PMID 7973651.
[2]  Boneh, D.; Dunworth, C.; Lipton, R. J.; Sgall, J. Í. (1996). “On the computational power of DNA”. Discrete Applied Mathematics 71: 79-94.
[3]  Lila Kari, Greg Gloor, Sheng Yu (January 2000). “Using DNA to solve the Bounded Post Correspondence Problem”. Theoretical Computer Science 231 (2): 192-203.
[4]  Lewin, D. I. (2002). “DNA computing”. Computing in Science & Engineering 4 (3): 5-8.
[5]  Lovgren, Stefan (2003-02-24). “Computer Made from DNA and Enzymes”. National Geographic. Retrieved 2009-11-26.
[6]  .In Just a Few Drops, A Breakthrough in Computing”, New York Times, May 21, 1997.
[7]  Shu, Jian-Jun; Wang, Q.-W.; Yong, K.-Y. (2011). “DNA-based computing of strategic assignment problems”. Physical Review Letters 106 (18): 188702.
[8]  Saenger, Wolfram (1984). “Principles of Nucleic Acid Structure”. New York: Springer-Verlag.
[9]  Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walters, Peter (2002). “Molecular Biology of the Cell”; Fourth Edition. New York and London: Garland Science.
[10]  Butler, John M. (2001). “Forensic DNA Typing”. Elsevier. ISBN 978-0-12-147951-0. OCLC 223032110 45406517, PP-14-15.
[11]  Shapiro, Ehud (1999-12-07)., “A Mechanical Turing Machine: Blueprint for a Biomolecular Computer,” Weizmann Institute of Science. Retrieved 2009-08-13.
[12]  Benenson, Y.; Paz-Elizur, T.; Adar, R.; Keinan, E.; Livneh, Z.; Shapiro, E. (2001). “Programmable and autonomous computing machine made of biomolecules”. Nature 414 (6862): 430-434.
[13]  Benenson, Y.; Gil, B.; Ben-Dor, U.; Adar, R.; Shapiro, E. (2004). “An autonomous molecular computer for logical control of gene expression”. Nature 429 (6990): 423-429.
[14]  Bond, G. L.; Hu, W.; Levine, A. J. (2005). “MDM2 is a Central Node in the p53 Pathway: 12 Years and Counting”. Current Cancer Drug Targets 5 (1): 3-8.
[15]  Kahan, M.; Gil, B.; Adar, R.; Shapiro, E. (2008). “Towards molecular computers that operate in a biological environment”. Physica D: Nonlinear Phenomena 237 (9): 1165-1172.
[16]  Weiss, S. (1999). “Fluorescence Spectroscopy of Single Biomolecules”. Science 283 (5408): 1676-1683.
[17]  Santoro, S. W.; Joyce, G. F. (1997). “A general purpose RNA-cleaving DNA enzyme”. Proceedings of the National Academy of Sciences 94 (9): 4262-4266.
[18]  Stojanovic, M. N.; Stefanovic, D. (2003). “A deoxyribozyme-based molecular automaton”. Nature Biotechnology 21 (9): 1069-1074.
[19]  MacDonald, J.; Li, Y.; Sutovic, M.; Lederman, H.; Pendri, K.; Lu, W.; Andrews, B. L.; Stefanovic, D.; Stojanovic, M. N. (2006). “Medium Scale Integration of Molecular Logic Gates in an Automaton”. Nano Letters 6 (11): 2598-2603.
[20]  Stojanovic, M. N.; Mitchell, T. E.; Stefanovic, D. (2002). “Deoxyribozyme-Based Logic Gates”. Journal of the American Chemical Society 124 (14): 3555-3561.
[21]  Cruz, R. P. G.; Withers, J. B.; Li, Y. (2004). “Dinucleotide Junction Cleavage Versatility of 8-17 Deoxyribozyme”. Chemistry & Biology 11: 57-67.
[22]  Darko Stefanovic's Group, “Molecular Logic Gates and MAYA II”, a second-generation tic-tac-toe playing automaton.
[23]  Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. (8 December 2006). “Enzyme-free nucleic acid logic circuits”. Science 314 (5805): 1585-1588.
[24]  A. Hierlemann, O. Brand, C. Hagleitner, H. Baltes, “Microfabrication techniques for chemical/biosensors, Proceedings of the IEEE, 91 (6), 2003, 839-863
[25]  A. Hierlemann, H. Baltes, “CMOS-based chemical microsensors, The Analyst”, 128 (1), 2003, pp. 15-28
[26]  Yong, E. (2013). “Synthetic double-helix faithfully stores Shakespeare's sonnets”. Nature.
[27]  Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; Leproust, E. M.; Sipos, B.; Birney, E. (2013). “Towards practical, high-capacity, low-maintenance information storage in synthesized DNA”. Nature 494 (7435): 77-80.
[28]  Church, G. M.; Gao, Y.; Kosuri, S. (2012). “Next-Generation Digital Information Storage in DNA”. Science 337 (6102): 1628.
[29]  David B. Fogel: Evolutionary Computation: The Fossil Record. Wiley-IEEE Press (May 1,1998).
[30]  E. Winfree, “DNA computing by self-assembly,” The Bridge, vol. 33, no. 4, pp. 31-38, 2003.
[31]  R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund and L. Adleman, “Solution of a 20-variable 3-SAT problem on a DNA computer,” Science, vol. 296, pp. 492-502, April 2002.