American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: http://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2013, 1(2), 13-23
DOI: 10.12691/ajn-1-2-1
Open AccessArticle

Changes in the Structure and Magnetic Characteristic of Nanofilms and Control of Spin Current by Short Laser Pulses

Mykola M. Krupa1,

1Laboratory of Magnetic Nanostructures, Institute of Magnetism NAS of Ukraine, Kyiv, Ukraine

Pub. Date: April 30, 2013

Cite this paper:
Mykola M. Krupa. Changes in the Structure and Magnetic Characteristic of Nanofilms and Control of Spin Current by Short Laser Pulses. American Journal of Nanomaterials. 2013; 1(2):13-23. doi: 10.12691/ajn-1-2-1

Abstract

The article focuses on photon drag effect under laser radiation in solid state materials. This effect causes a high concentration of nonequilibrium electrons in the area of the laser beam the exit out of material. Coulomb interaction of spatial charge of these electrons with the charged impurity atoms can cause their drift in the direction of laser radiation. The photon drag effect can be used in laser doping technology of thin films. In multilayer magnetic nanofilms the photon drag effect of polarized electrons can lead to magnetic reversal of magnetic layers, which can be used to control a high speed spin current in the elements of spintronics.

Keywords:
laser radiation photon drag effect semiconductors multilayer magnetic nanofilms spin current

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Ohno, “Making Nonmagnetic Semiconductors Ferro-magnetic”, Science, vol. 281, pp. 951-956, August, 1998.
 
[2]  J. Cibert, J. Bobo, U. Lüders, “Development of new materials for spintronics”, Comptes Rendus Physique, vol. 6, pp. 977-996, Sept. 2005.
 
[3]  V. Yu. Irkhin, L. Chioncel, A. I. Lichtenstein, R. A. de Groot, “Half-metallicity in NiMnSb: A variational cluster approach with ab initio parameters”, Rev. Mod. Phys., vol. 81, pp. 315-323, May 2010.
 
[4]  E. A. Al-Nuaimy, Hussein Al Abdulqader, Journal of Electron Devices, “BJT Fabrication Using Excimer Laser Assisted Spin-on Doping Technique”, Journal of Electron Devices, vol. 6, pp. 197-202, 2008.
 
[5]  I. Zuti´c, J. Fabian, and S. Das Sarma, “Spintronics: Funda-mentals and Applications,” Rev. Mod. Phys., vol. 76, #2, pp. 323-410, Febr. 2004.
 
[6]  P. S. Pershan, J. P. Ziel , and L. D. Malmstrom, Theoretical Discussion of the Inverse Faraday Effect, Raman Scattering, and Related Phenomena, Phys. Rev., vol. 143, #2. pp. 574-583, 1966.
 
[7]  R. Hertel, Theory of Optical Rotation, Faraday Effect, and Inverse Faraday Effect, Journal of Magnetism and Magnetic Materials, vol. 303, pp. L1-L4, 2006.
 
[8]  J. C. Slonczewski, Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials, vol. 159, pp. L 1-L7, 1996.
 
[9]  J. Katine, F. Albert, R. Buhrman E. B. Myers and D. C. Ralph., Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu /Co Pillar, Phys. Rev. Letters, vol. 84, pp. 3149-3152, 2000.
 
[10]  M.M. Krupa, Spin_Dependent Current and Magnetization Reversal in Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76 Nanofilms in Laser Radiation Field, Journal of Experimental and Theoretical Physics, vol. 108, pp. 856-865, #5, 2009.
 
[11]  M. M. Krupa, Laser Radiation Control of the Magnetic State of Multilayer Nanofilms, Technical Physics, vol. 56, #1, pp. 107-116. 2011.
 
[12]  A. M. Danishevskii, A. A. Kastalskii, S. M. Ryvkin, and I. D. Yaroshetskii, “Photon drag effect of the free carriers in direct interband transitions in semiconductors”, Sov. Phys. JETP, vol. 31, pp. 292-297, Nov. 1970.
 
[13]  A. F. Gibson, M. F. Kimmitt, and A. C. Walker, “Photon drag in Germanium,” Appl. Phys. Lett.,vol. 17, pp. 75-79, Febr. 1970.
 
[14]  J. E. Goff and W. L. Schaich, “Theory of the photon-drag effect in simple metals”, Phys. Rev., B, vol. 61, #15, pp. 10471-10477, April 2000.
 
[15]  M.M. Krupa, A. M. Pogorily, “Scanning of laser radiation and clearing of materials on the basis of the phenomenon light induced drift of particles in semiconductors”, Sov. Technical Physics, vol.68, № 4. – P.121-124, 1998.
 
[16]  M.M. Krupa, A.M. Korostil, Yu. B. Skirta, “Drift электронов and atoms in the field of laser radiation and its influence on optical properties of semiconductors”, Radiophys. and Quantum Electronic., vo. XLVIII, № 8 pp. 45-52, 2005.
 
[17]  M.M. Krupa, Yu. B. Skirta, “Drift of atoms of bismuth in the field of laser radiation and a data recording in thin films phthalocyanine dye”, Radiophysic and Quantum Electronic, vol. XLІХ, №6, pp. 513-518, 2006.
 
[18]  R. Merservey, P. M. Tedrov, “Spin-Polarized Electron Tun-neling”, Phys. Rep., vol. 238, #4, pp. 175-239, 1994.
 
[19]  R. Pittini, P. Wachter, Cerium compounds: The new gen-eration magneto-optical Kerr rotators with unprecedented large figure of merit”, JMMM, vol. 186, #3, pp. 306-312, July 1998.
 
[20]  H. J. Leamy, A. G. Dirks, “Microstructure and magnetism in amorphous rare-earth-transition-metal thin films. II Magnetic anisotropy “, J. Appl. Phys., vol. 50, №4, pp. 2871-2882, 1979.
 
[21]  M.M. Krupa, A.M. Korostil, Impact of laser irradiation on magneto-optical properties of multilayered film structures, Inter. Journal of Modern Physics B, vol. 21,#32, pp. 5339-5350, 2007.
 
[22]  M. Komori, T. Nukata, K. Tsutsumi, C. Inokyti, I. Sakyrai, “Amorphous TbFe Films for Magnetic Printing with Laser Writing”, IEEE Trans. Magnetic, vol. 20, №5, pp. 1042-1044, 1984.
 
[23]  M. Julliere, “Tunneling between ferromagnetic films”, Phys. Letter., vol. 54, #3, pp. 225-226, September 1975.