American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Nanomaterials. 2023, 11(1), 61-71
DOI: 10.12691/ajn-11-1-5
Open AccessReview Article

Review of Recent Advances of GaN Nanowires Based Sensors

H. Murad1, W. Hashim1 and Ahmed M. Nahhas1,

1Department of Electrical Engineering, Faculty of Engineering and Islamic Architecture, Umm Al Qura University, Makkah, Saudi Arabia

Pub. Date: February 20, 2023

Cite this paper:
H. Murad, W. Hashim and Ahmed M. Nahhas. Review of Recent Advances of GaN Nanowires Based Sensors. American Journal of Nanomaterials. 2023; 11(1):61-71. doi: 10.12691/ajn-11-1-5


This paper presents a review of the recent advances of GaN nanowire-based sensors. GaN nanostructures of various forms including nanowires, nanotubes, nanofibers, nanoparticles and nanonetworks have been reported for several sensing applications due to their unique electrical, optical, and structural properties. The nature of GaN materials provides advantages for nanodevices compared to thin films due to its higher surface-to-volume ratio. In addition, GaN materials can absorb ultraviolet radiation which is a key feature in several optical applications. These advantages led to much attention and further study in the applications of GaN. In this paper, the recent advances of GaN sensing applications such as gas sensors, biosensors, and pressure sensors are presented. The performance of these sensors is demonstrated along with the structural, electrical, and optical properties of GaN.

gallium nitride (GaN) nanostructured doping nanowires sensors ultraviolet (UV)

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 14


[1]  Liu, X., Yang, X., Yang, X., Lv, B., Luo, Z. “Exploration of N- and p-type doping for two-dimensional gallium nitride: Charged defect calculation with first principles.” The European Physical Journal B 93, 8-10 (2020).
[2]  Zhang, X., Jin, L., Dai, X., Chen, G., Liu, G. “Two-Dimensional GaN: An Excellent Electrode Material Providing Fast Ion Diffusion and High Storage Capacity for Li-Ion and Na-Ion Batteries” Appl. Mater. Interfaces 10.38978, (2018).
[3]  Nahhas, A. M. “A Review of GaN Nanowires Based Sensors.” American Journal of Nanomaterials 1. 32-47, (2020).
[4]  Sun, R., Wang, G., Peng, Z. “Fabrication and UV photo response of GaN nanowire-film hybrid films on sapphire substrates by chemical vapor deposition method.” Materials Letters 217-288-291, (2018).
[5]  Quang, B., Ludovic, L., Martina, M., Nikoletta, J., Olivia, M., Laurent, T., Xavier, L., Christophe, D., Jean, H., Maria, T., Noelle, G. “GaN/Ga2O3 Core/Shell Nanowires Growth: Towards High Response Gas Sensors.” Applied Sciences. 9-3528, (2019).
[6]  Thakur, D., Sharma, A., Awasthi, A., Rana, D., Singh, D., Pandey, S., Thakur, S. “Manganese-Doped Zinc Oxide Nanostructures as Potential Scaffold for Photocatalytic and Fluorescence Sensing Applications.” Chemosensors 8-120, (2020).
[7]  Pandey, S., Fosso, E., Spiro, M., Waanders, F., Kumar, N., Ray, S., Kim, J. “Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite”, Materials Today Chemistry 18-100376, (2020).
[8]  Maity, S., Ramanan, C., Ariese, F., MacKenzie, R. C. I., von, E. “In Situ Visualization and Quantification of Electrical Self-Heating in Conjugated Polymer Diodes Using Raman Spectroscopy.” Advanced Electronic Materials 8-2101208, (2022).
[9]  Arivazhagan, L., Nirmal, D., Reddy, K., Ajayan, J., Godfrey, D., Prajoon, P., Ray, A. “A Numerical Investigation of Heat Suppression in HEMT for Power Electronics Application” Silicon 13-3039, (2020).
[10]  Huang, D., Sun, Q., Liu, Z., Xu, S., Yang, R., Yue, Y. “Ballistic Thermal Transport at sub-10 nm laser-induced hot spots in GaN Crystal” Advanced Science 10, 202204777, (2022).
[11]  Sena, H., Atsushi, T., Yotaro, W., Tomomi, A., Toshiki, Y., Daisuke, K., Ryuji, S., Yoshio, H., Yasunori, I., Hiroshi, A. “Gallium nitride wafer slicing by a sub‑nanosecond laser: effect of pulse energy and laser shot spacing” Applied Physics A, 127-648, (2021).
[12]  Sodre, J., Longo, E., Taft, C., Martins, J., Santos, J. “Electronic structure of GaN nanotubes.” Comptes Rendus Chimie 20-190-196, (2017).
[13]  Lee, M., Mikulik, D., Park, S. “Thick GaN growth via GaN nanodot formation by HVPE.” CrystEngComm 19-930-935, (2017).
[14]  Reddeppa, M., Park, B., Lee, S., Hai, N., Kim, M. “Improved Schottky behavior of GaN nanorods using H2 plasma treatment.” Current Applied Physics 17-192-196, (2017).
[15]  Narita, T., Kataoka, K., Kanechika, M., Kachi, T., Uesugi, T. “Ion implantation technique for conductivity control of GaN.” 17th International Workshop on Junction Technology (IWJT) 87-90, (2017).
[16]  Narita, T., Kachi1, T., Kataoka, K., Uesugi, T. “P-type doping of GaN(0001) by magnesium ion implantation.” Applied Physics Express 10-16501, (2017).
[17]  Liu, X., Yang, X., Yang, X., Bing, L., Zijiang, L. “Exploration of n- and p-type doping for two-dimensional gallium nitride.” The European Physical Journal B 93-148, (2020).
[18]  Wang, X., Xu, L., Jiang, Y., Yin, Z., Chan, C., Deng, R. “III-V compounds as single photon emitters.” Journal of Semiconductors 40-071906, (2019).
[19]  Manjakkal, L., Szwagierczak, D., Dahiya, R. “Metal oxides based electrochemical pH sensors: Current progress and future perspectives.” Progress in Materials Science 109-100635, (2020).
[20]  Upadhyay, K., Chattopadhyay, Manju, K. “A Composition-Dependent Unified Analytical Model for Quaternary InAlGaN/GaN HEMTs for pH Sensing.” Journal of Electronic Materials 50, 3392-3405, (2021).
[21]  Khan, M. I., Mukherjee, K., Shoukat, R., Dong, H. “A review on pH sensitive materials for sensors and detection methods.” Microsystem Technologies 23-4391, (2017).
[22]  Ghoneim, M. T., Nguyen, A., Dereje, N., Huang, J., Moore, G. C., Murzynowski, P. J., Dagdeviren, C. “Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications.” Chemical Reviews 119-5248, (2019).
[23]  Sanyal, I., Lee, Y. C., Chen, Y. C., Chyi, J. I. “Achieving high electron mobility in AlInGaN/GaN heterostructures: The correlation between thermodynamic stability and electron transport properties.” Applied Physics Letters 114-222103, (2019).
[24]  Shrestha, N. M., Chen, C. H., Tsai, Z. M., Li, Y., Tarng, J. H., Samukawa, S. “Barrier Engineering of Lattice Matched AlInGaN/ GaN Heterostructure Toward High Performance E-mode Operation.” International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) 1-4, (2019).
[25]  Basem, H., Ahmad, A., Nasser, S., Hala, A., Ibrahium, P. D., Nezhad, Mohd, S. “A density functional theory study of Au- decorated gallium nitride nano-tubes as chemical sensors for the recognition of sulfonamide.” Journal of Sulfur Chemistry, (2022).
[26]  Zhao, T., Wang, M., Chu, Y. “On the Bounds of the Perimeter of an Ellipse.” Acta Mathematica Scientia 42:491-501, (2022).
[27]  Zhao, T., Wang, M., Hai, G. “Landen inequalities for Gaussian hypergeometric function”, Serie A. Mathematics 116, 1-23, (2021).
[28]  Nazeer, M., Hussain, F., Khan, M. “Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel.” Applied Mathematics and Computation 420:126868, (2022).
[29]  Park, B., Seol, J., Hahm, H. “A Schottky-Type Metal- Semiconductor-Metal Al0.24Ga0.76N UV Sensor Prepared by Using Selective Annealing.” Sensors 21-4243, (2021).
[30]  Lee, C. J., Won, C. H., Lee, J. H., Hahm, S. H., Park, H. “GaN-Based Ultraviolet Passive Pixel Sensor on Silicon (111) Substrate.” Sensors 19-1051, (2019).
[31]  Lee, C. J., Won, C. H., Lee, J. H., Hahm, S. H., Park, H. “Selectively Enhanced UV-A Photoresponsivity of a GaN MSM UV Photodetector with a Step-Graded AlxGa1-xN Buffer Layer.” Sensors 17-1684, (2017).
[32]  Chiu, Y. C., Yeh, P. S., Wang, T. H., Chou, T. C., Wu, C. Y., Zhang, J. J. “An Ultraviolet Sensor and Indicator Module Based on p-i-n Photodiodes.” Sensors 19-4938, (2019).
[33]  Chang, S., Chang, M., Yang, Y. “Enhanced Responsivity of GaN Metal-Semiconductor-Metal (MSM) Photodetectors on GaN Substrate.” IEEE Photonics Journal, 9-7, (2017).
[34]  Nallabala, N. K. R., Godavarthi, S., Kummara, V. K., Kesarla, M. K., Saha, D., Akkera, H. S., Guntupalli, G. K., Kumar, S., Vattikuti, S. V. P. “Structural, optical and photoresponse characteristics of metal-insulator-semiconductor (MIS) type Au/Ni/CeO2/GaN Schottky barrier ultraviolet photodetector.” Materials Science in Semiconductor Processing 117-105190, (2020).
[35]  Seol, J. H., Hahm, S. H. “Selective Ohmic Contact Formation on Schottky Type AlGaN/GaN UV Sensors Using Local Breakdown.” Materials Science in Semiconductor Processing 19-2946-2949, (2019).
[36]  Dhaneshwar, M., Sung, Y., Youjoung, S., Eugene, P. “Analytical solutions of electroelastic fields in piezoelectric thin- film multilayer: applications to piezoelectric sensors and actuators.” Acta Mechanica 231-1435-1459, (2020).
[37]  Yinming, Z., Yang, L., Yongqian, L., Qun, H. “Development and Application of Resistance Strain Force Sensors.” Sensors 20-5826, (2020).
[38]  Zhang, C., Ge, Y., Hu, Z., Zhou, K., Ren, G., Wang, X. “Research on deflection monitoring for long span cantilever bridge based on optical fiber sensing.” Optical Fiber Technology 11-200-202, (2019).
[39]  Zheng, F., Wu, Y., Zhang, J., Yang, X. “Piezoresistive flexible sensor based on single wall carbon nanotubes.” Sensors, 32-1009-1015, (2019).
[40]  Bishop, M. D., Hills, G., Srimani, T. “Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities.” Nature Electronics 3-492-501, (2020).
[41]  Bodelot, L., Pavic, L., Hallais, S., Charliac, J., Lebental, B. “Aggregate-driven reconfigurations of carbon nanotubes in thin networks under strain: In-situ characterization.” Scientific Reports 9-1-11, (2019).
[42]  Nguyen, T., Dinh, T., Foisal, A., Phan, H., Nguyen, T., Nguyen, N., Dao, D. “Giant piezoresistive by optoelectronic coupling in a heterojunction.” Nature Communications 10-4139, (2019).
[43]  Wang, Z., Dong, C., Wang, X., Li, M., Nan, T., Liang, X., Chen, H., Wei, Y., Zhou, H., Zaeimbashi, M. “Highly sensitive integrated flexible tactile sensors with piezoresistive CST thin films.” Flexible Electronics 2-17, (2018).
[44]  Rui, X., Shao, Z., Long, Z., Chao, W., Lu, W., Jing, Y. “Electrodeposition of Pd-Pt Nanocomposites on Porous GaN for Electrochemical Nitrite Sensing.” Sensors 19-606.0.3390/s19030606, (2019).
[45]  Shahrokhian, S., Rezaee, S. “Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim.” Electrochimica Acta 259-36-47, (2018).
[46]  Zheng, J., Wang, B., Ding, A., Bo, W., Chen, J. “Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of dopamine” Journal of Electroanalytical Chemistry 816-189-194, (2018).
[47]  Ali, M., Ali, H., Hajer, Z., Naser, M. “Extended Gate Field Effect Transistor-Based n-Type Gallium Nitride as a pH Sensor.” Journal of Electronic Materials 50 7071-7077, (2021).
[48]  Ahmed, N. M., Sabah, F. A., Al-Hardan, M. A. Almessiere, S. M. Mohammad, W. F., Lim, M., Jumaah, A. S., Islam, Z., Hassan, H. J., Afzal, N. “Development of EGFET-based ITO pH sensors using epoxy free membrane.” Semiconductor Science and Technology 36-045027, (2021).
[49]  Palit, S., Singh, K., Lou, B. S., Her, J. L., Pang, S. T., Pan, T. M. “Ultrasensitive dopamine detection of indium-zinc oxide on PET flexible based extended-gate field-effect transistor.” Sensors and Actuators B: Chemical 310-127850, (2020).
[50]  Khan, M., Mulpuri, V. “Gallium Nitride (GaN) Nanostructures and Their Gas Sensing Properties: A Review”, Sensors 20-3889, (2020).
[51]  Gomes, J. B. A., Rodrigues, J. J. P. C., Rabelo, R. A. L., Kumar, N., Kozlov, S. “IoT-Enabled Gas Sensors: Technologies, Applications, and Opportunities.” Journal of Sensor and Actuator Networks 8-57, (2019).
[52]  Rani, A., DiCamillo, K., Khan, M. A. H., Paranjape, M., Zaghloul, M. E. “Tuning the Polarity of MoTe2 FETs by Varying the Channel Thickness for Gas-Sensing Applications.” Sensors 19-2551, (2019).
[53]  Sarf, F. “Metal Oxide Gas Sensors by Nanostructures” Gas Sensors, Ch.2, P.3, (2020).
[54]  Zhang, M., Zhao, C., Gong, H., Niu, G., Wang, F. “High Sensitivity Gas Sensor Based on Porous GaN Nanorods with Excellent High-Temperature Stability.” 20th International Conference on Solid-State Sensors, Actuators and Microsystems 1369-1372, (2019).
[55]  Zhang, M., Zhao, C., Gong, H., Niu, G., Wang, F. “Porous GaN Submicron Rods for Gas Sensor with High Sensitivity and Excellent Stability at High Temperature.” ACS Applied Materials 11-33124-33131, (2019).
[56]  Reddeppa, M., Park, B. G., Chinh, N. D., Kim, D., Oh, J. E., Kim, T. G., Kim, M. D. “A novel low-temperature resistive NO gas sensor based on InGaN/GaN multi-quantum well-embedded p-i-n GaN nanorods.” Dalton Transactions 48-1367-1375, (2019).
[57]  Chandran, B., Janakiraman, K. “New Disposable Nitric Oxide Sensor Fabrication Using GaN Nanowires.” ACS Omega 4-17171-17176, (2019).
[58]  Khan, M. A. H., Thomson, B., Debnath, R., Rani, A., Motayed, A., Rao, M. V. “Reliable anatase-titania nanoclusters functionalized GaN sensor devices for UV assisted NO2 gas-sensing in ppb level.” Nanotechnology 31-155504, (2020).
[59]  Shi, C., Rani, A., Thomson, B., Debnath, R., Motayed, A., Yoannou, D. E., Li, Q. “High-performance room-temperature TiO2-functionalized GaN nanowire gas sensors.” Applied Physics Letters 115-121602, (2019).
[60]  Khan, M. A. H., Thomson, B., Yu, J., Debnath, R., Motayed, A., Rao, M. V. “Scalable metal oxide functionalized GaN nanowire for precise SO2 detection.” Sensors and Actuators B: Chemical-ScienceDirect 318-128223, (2020).
[61]  Thomson, B., Shi, C., Rani, A., Debnath, R. M. “A. Low- power, Chip-Scale, Carbon Dioxide Gas Sensors for Spacesuit Monitoring.” IEEE Sensors, P.6, (2018).
[62]  Khan, M. A. H., Thomson, B., Debnath, R., Motayed, A., Rao, M. V. “Nanowire-Based Sensor Array for Detection of Cross-Sensitive Gases Using PCA and Machine Learning Algorithms.” IEEE Sensors 20-6020-6028, (2020).
[63]  Khan, M. A. H., Motayed, A., Rao, M. V. “Identification and Quantification of Gases and Their Mixtures Using GaN Sensor Array and Artificial Neural Network.” Measurement Science and Technology, ECS J. (2020).
[64]  Dong, Y., Dong-Hyeok, S., Quan, D., Jun-Hyeok, L., Chul-Ho, W., Jeong-Gil, K., Dunjun, C., Jung-Hee, L., Hai, L., Rong, Z., Youdou, Z. “High Sensitive pH Sensor Based on AlInN/GaN Heterostructure Transistor” Sensors, 18-1314, (2018).