American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: http://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2020, 8(1), 1-9
DOI: 10.12691/ajn-8-1-1
Open AccessReview Article

Tribological Behavior of Adding Nano Oxides Materials to Lithium Grease: A Review

Eman Ahmed1, Nabhan A.2, , Nouby M. Ghazaly1 and Abd El Jaber G.T.1

1Facultyof Engineering, South Valley University, Qena 83521, Egypt

2Faculty of Engineering, Minia University, El-Minia 61111, Egypt

Pub. Date: December 25, 2019

Cite this paper:
Eman Ahmed, Nabhan A., Nouby M. Ghazaly and Abd El Jaber G.T.. Tribological Behavior of Adding Nano Oxides Materials to Lithium Grease: A Review. American Journal of Nanomaterials. 2020; 8(1):1-9. doi: 10.12691/ajn-8-1-1

Abstract

The nanoparticles have unique properties in lubrication and tribology such as anti-wear, reducing friction, and high load capacity. So add Nano Oxides Materials to Lithium Grease are capable of inducing the required reactions on the surfaces of bearings, thus providing reliable damage protection even under several operating conditions. A nanoparticle helps in improving the lives of the lubricating oil and consequently, the life of the bearing in machinery can save millions of dollars in emergency maintenance. The vibration analysis is the most common method used in monitoring applications; Vibration analysis of ball bearing with adding nano oxides particles like nano silicon dioxide, nano titanium dioxide and a hybrid between them to lithium grease is examined.

Keywords:
format microsoft word template style insert template

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  E. F. Jones, “The manufacture greases and properties of lubricating,” Tribology, vol. 1, no. 4, pp. 161-163, 1968.
 
[2]  V. Mota and L. A. Ferreira, “Influence of grease composition on rolling contact wear: Experimental study,” Tribol. Int., vol. 42, no. 4, pp. 569-574, Apr. 2009.
 
[3]  El-Adly, R. A and Ismail, E.A. Lubricating greases based on fatty by-products and jojoba constituents, Chapter 8, Tribology-lubricants and lubrication, 2011 ISBN 978-953-307-371-2, INTECH publisher.
 
[4]  Samy, A. M. and Ali, W. Y., “Developing the tribological properties of lithium greases to withstand abrasion of machine elements in dusty environment”, International Journal of Scientific & Engineering Research, Volume 4, Issue 10, pp. 1176-1181, (2013).
 
[5]  Elhabib O. A. and Ali, W. Y., “The effect of Tin as solid lubricant dispersing Lithium grease in reducing friction coefficient and wear in dusty environments”, 1 – 2 / 2013, 65, Jahrgang, METALL, pp. 568-573, (2013).
 
[6]  Ezzat, F. M., Youssef, M. M., Abd-El Aal, G. M., and Hakim, k. A., “Effect of Operating Conditions on Wear of Diesel Engine Liner and Rings”, Proceedings of The 5th International Conference of the Egyptian Society of Tribology, Cairo University, EGYPT, 10-12 April, pp. 355-363, (1999).
 
[7]  Ali, W. and Mousa, M., “Experimental Study of Wear and Friction Caused By Abrasive Contaminants and Fuel Dilution in Lubricating Oil”, 5th International Congress On Tribology EUROTRIB 89, Helsinki, Finland, pp. 437-431, June 13, (1988).
 
[8]  Cann P. M. “Grease degradation in a bearing simulation device”, TribolInt; 39, pp. 1698-1706, (2006).
 
[9]  Cann P.M, Webster M.N., Doner J. P., Wikstrom V., Lugt P., “Grease degradation in ROF bearing tests”, Tribol Trans, 50 (2): pp. 187-197, (2007).
 
[10]  Couronne I., Vergne P., Mazuyer D., Truong-Dinh N., Girodin D., “Effects of grease composition and structure on film thickness in rolling contact”, Tribol Trans; 46 (1), pp. 31-26, (2003).
 
[11]  Donzella G., Faccoli M., Ghidini A., Mazzu A., Roberti R., “The competitive role of wear and RCF in a rail steel”, EngFract Mech,72, pp. 287-308, (2005.
 
[12]  Miettinen J., Andersson P., “Acoustic emission of rolling bearings lubricated with contaminated grease”, Tribology International 33, pp. 777-787, (2000).
 
[13]  Nikas GK, Sayles RS, Ioannides E., “Effects of debris particles in sliding/rolling elastohydrodynamic contacts”, Proceedings of the Institution of Mechanical Engineers, 212, (J5), pp. 333-43, (1998).
 
[14]  Roylance B. J., Hunt T. M., "Wear Debris Analysis", Cox moor Publishing Company, Oxford, UK, (1999).
 
[15]  T. Braron, "Engineering Condition Monitoring", Addison Wesley longman, (1996).
 
[16]  Serrato R., Maru M.M., Padovese L.R., "Effect of lubricant viscosity grade on mechanical vibration of roller bearings", Tribology International, Vol. 40, pp. 1270-1275, (2007).
 
[17]  Nabhan, A., “Vibration analysis of adding contaminants particles and carbon nanotubes to lithium grease of ball bearing” The 22nd International Conference on Vibroengineering – Moscow, Vibroengineer in Procedia, Vol. 8, pp. 28-32, (2016).
 
[18]  More Y.Y., Deshmukh A.P., "Study of Effect of Solid Contaminants in Grease on Performance of Ball Bearing by Vibration an Analysis", International Journal of Innovations in Engineering Research and Technology [IJIERT], Vol. 2, Issue 5, (2015).
 
[19]  Wislicki, B., et a/., ‘Tribological properties of the Cu/CuO micro dispersion inlubricating oil’, Tribo/ogia, 2, 4 (1995),pp. 361-9 (in Polish).
 
[20]  J. Zhou, J. Yang, Z. Zhang, W. Liu, and Q. Xue, “Study on the structure and tribological properties of surface-modified Cu nanoparticles,” Mater. Res. Bull., vol. 34, no. 9, pp. 1361-1367, 1999.
 
[21]  V. N. Bakunin, A. Y. Y. Suslov, G. N. Kuzmina, O. P. Parenago, and a V Topchiev, “Synthesis and application of inorganic nanoparticles as lubricant components--a review,” J. Nanoparticle Res., vol. 6, no. 2, pp. 273-284, 2004.
 
[22]  Z. Zhang, D. Simionesie, and C. Schaschke, “Graphite and Hybrid Nanomaterials as Lubricant Additives,” Lubricants, vol. 2, no. 2, pp. 44-65, Apr. 2014.
 
[23]  D. P. MacWan, P. N. Dave, and S. Chaturvedi, “A review on nano-TiO2 sol-gel type syntheses and its applications,” J. Mater. Sci., vol. 46, no. 11, pp. 3669-3686, 2011.
 
[24]  L. Wang, B. Wang, X. Wang, and W. Liu, “Tribological investigation of CaF2 nanocrystals as grease additives,” Tribol. Int., vol. 40, no. 7, pp. 1179-1185, Jul. 2007.
 
[25]  S. Sun, Z. Zou, and G. Min, “Synthesis of tungsten disulfide nanotubes from different precursor,” Mater. Chem. Phys., vol. 114, no. 2-3, pp. 884-888, 2009.
 
[26]  R. Tenne, “Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 208, no. 1-3, pp. 83-92, 2002.
 
[27]  L. Rapoport, O. Nepomnyashchy, I. Lapsker, a. Verdyan, a. Moshkovich, Y. Feldman, and R. Tenne, “Behavior of fullerene-like WS2 nanoparticles under severe contact conditions,” Wear, vol. 259, no. 1-6, pp. 703-707, 2005.
 
[28]  A. Margolin, R. Popovitz-Biro, A. Albu-Yaron, L. Rapoport, and R. Tenne, “Inorganic fullerene-like nanoparticles of TiS2,” Chem. Phys. Lett., vol. 411, no. 1-3, pp. 162-166, 2005.
 
[29]  A. Geim, “Beyond graphene,” Science (80-. )., vol. 348, no. 6234, pp. 490-492, 2004.
 
[30]  A. K. Geim, “Graphene: Status and Prospects,” Science (80-.)., vol. 324, no. June, pp. 1530-1534, 2009.
 
[31]  F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, a. C. Ferrari, R. S. Ruoff, and V. Pellegrini, “Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage,” Science (80-.)., 2015.
 
[32]  L. Rapoport, V. Leshchinky, Y. Volovik, M. Lvovsky, O. Nepomnyashchy, Y. Feldman, R. Popovitz-Biro, and R. Tenne, “Modification of contact surfaces by fullerine-like solid lubricant nanoparticles,” Surf. Coatings Technol ., vol. 163-164, pp. 405-412, 2003.
 
[33]  X. Fan, Y. Xia, L. Wang, and W. Li, “Multilayer Graphene as a Lubricating Additive in Bentone Grease,” Tribol. Lett., pp. 455-464, Jul. 2014.
 
[34]  W. L. G. Zhao, Q. Zhao, W. Li, X. Wang, “Tribological properties of nano-calcium borate as lithium grease additive,” Lubr. Sci., vol. 26, no. April, pp. 43-53, 2009.
 
[35]  J. Chen, “Tribological Properties of Polytetrafluoroethylene, Nano-Titanium Dioxide, and Nano-Silicon Dioxide as Additives in Mixed Oil-Based Titanium Complex Grease,” Tribol. Lett., vol. 38, no. 3, pp. 217-224, 2010.
 
[36]  H. Chang, C. Lan, C. Chen, M. Kao, and J. Guo, “Anti-Wear and Friction Properties of Nanoparticles as Additives in the Lithium Grease,” Int. J. Precis. Eng. Manuf., vol. 15, no. 10, pp. 2059-2063, 2014.
 
[37]  X. Ji, Y. Chen, and G. Zhao, “Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease,” pp. 113-119, 2011.
 
[38]  Z.-L. Cheng and X.-X. Qin, “Study on friction performance of graphene-based semi-solid grease,” Chinese Chem. Lett., vol. 25, no. 9, pp. 1305-1307, Sep. 2014.
 
[39]  A. Mohamed, T. A. Osman, A. Khattab, and M. Zaki, “Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease,” vol. 137, no. January, pp. 1-5, 2015.
 
[40]  Sangram j. patil, d. p. patil, a. p. shrotri, v p. patil. "A review on effect of addition of nano particles on tribological properties of Lubricants". IJMET, Volume 5, Issue 11, November (2014), pp. 120-129.
 
[41]  Astakhov, M.V., ‘Ultrafine powders and properties of lubricating oil’, Avtomob. Promst., 2 (1994), pp.23-4 (in Russian).
 
[42]  Radice S., Mischler S. "Effect of electrochemical and mechanical parameters on the lubrication behavior of Al2O3 nanoparticles in aqueous suspensions" Wear, Vol. 261, 2006, p. 1032-1041.
 
[43]  Shi G., Zhang M. Q., Rong M. Z., Bernd W., Klaus F. Sliding wear behavior of epoxy containing Nano Al2O3 particles with different pretreatments. Wear, Vol. 256, 2004, p. 1072-1081.
 
[44]  Li X. H., Cao Z., Zhang Z. J., Dang H. X. Surface-modification in situ of Nano SiO2 and its structure and tribological properties. Applied Surface Science, Vol. 252, 2006, pp. 7856-7861.
 
[45]  Peng D. X., Kang Y., Hwang R. M., Shyr S. S., Chang Y. P. Tribological properties of diamond andSiO2 nanoparticles added in paraffin. Tribology International, Vol. 42, 2009, p. 911-917.
 
[46]  Ma S. Y., Zheng S. H., Ding H. Y., Li W. Anti-wear and reduce-friction ability of ZrO2/SiO2self-lubricating composites. Advanced Materials Research, Vols. 79-82, 2009, p. 1863-1866.
 
[47]  Li W., Zheng S. H., Ma S. Y., Ding H. Y., Jiao D., Cao B. Q. Study of surface modification ofZrO2/SiO2 Nano composites with aluminum zirconium coupling agent. Asian Journal of Chemistry, Vol. 23, 2011, p. 705-708.
 
[48]  Jiao Da, et al. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, Vol. 257, 2011, p. 5720-5725.
 
[49]  Prakash E., Kumar Siva, Kumar Muthu "Experimental studies on vibration characteristics on ball bearing operated with copper oxide Nano particle mixed lubricant" International Journal of Engineering and Technology, Vol. 5, 2013, pp. 4127-4130.
 
[50]  Qiu Sunqing, Dong J., and Cheng G." A Review of Ultrafine Particles as Anti wear Additives and Friction Modifiers in Lubricating oils" Lubrication Science, (11) 217, May (1999), PP. 11-3.
 
[51]  Guo, Q.L., and Okaka, K., ‘Effect of BN on lubricating oil and grease’, Seisan Kenkyu, 4 (1994) 46 (in Japanese).
 
[52]  Hisakado, T., Taukozoe, T., eta/. ‘Lubrication mechanism of solid lubricants in oil’, Wear, 105 (1 983), pp. 245-51.
 
[53]  Da Jiao, Shaohua Zheng, Yingzi Wang, Ruifang Guan, Bingqiang Cao" The tribology properties of alumina/silica composite nanoparticles as lubricant Additives" Applied Surface Science , vol.257, pp.5720-5725, (2011).
 
[54]  J.Padgurskas, R. Rukuiza, I. Prosycˇevas, R.Kreivaitis "Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles". Tribology International 60, pp.224-232, (2013).
 
[55]  J. X. Dong and Z. S. Hu. A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer Zinc borate” Tribology International, Vol. 31, No. 5, pp. 219-223, (1998).
 
[56]  A. Hern´andez Battez ,R. Gonz´alez, J.L. Viesca , J.E. Fern´andez, J.M. D´ıaz Fern´andez, A. Machadoc, R. Choud, J. Riba" CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants" Wear ,vol.265 pp.422-428, (2008).
 
[57]  A. h.Battez , J.E. Fernandez Rico , A. Navas Arias ,J.L. Viesca Rodriguez, R. Chou Rodriguez, J.M. Diaz Fernandez. "The tribological behaviour of ZnO nanoparticles as an additive to PAO6" Wear, vol.261 pp.256-263, (2006).
 
[58]  S. Tarasov, A. Kolubaev, S. Belyaev a, M. Lerner, F. Tepper. "Study of friction reduction by Nano copper additives to motor oil" Wear, Vol. 252, pp.63-69, (2002).
 
[59]  YU He-long,XU Yi, SHI Pei-jing, XU Bin-shi, WANG Xiao-li, LIU Qian. "Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant" Trans. Nonferrous Met. Soc. China, Vol.18, PP.636-641, (2008).
 
[60]  T. Luo ,X. Wein, X.Huang, L.Huang, F.Yang" Tribological propertiesofAl2O3 nanoparticles as lubricating oil additives "Ceramics International,Vol.40,PP.7143-7149,(2014).
 
[61]  K. Lee, Y. Hwang, S. Cheong,Y. Choi, L. Kwon , J. Lee, S. Hyung Kim" Understanding the Role of Nanoparticles in Nano-oil Lubrication" Tribol Lett, vol.35,pp. 127-131, (2009).
 
[62]  S. Ingole, A. Charanpahari, A. Kakade, S.S.Umare, D.V.Bhatt, J. Menghani"TribologicalbehaviorofnanoTiO2 as an additive in base oil" Wear, vol.301, pp.776-785, (2013).
 
[63]  Q. Xue, Weimin Liu, Zhijun Zhang. "Friction and wear properties of a surface-modified Ti02 nanoparticle as an additive in liquid paraffin". Wear, vol. 213, pp.29-32, (1997).
 
[64]  Y.Y. Wu, W.C. Tsui, T.C. Liu. "Experimental analysis of tribological properties of lubricating oils with nanoparticle additives." Wear, vol.262, pp.819-825, (2007).
 
[65]  X. Li , Z. Cao , Z. Zhang , H. Dang "Surface-modification in situ of nano-SiO2 and its structure and tribological properties" Applied Surface Science ,Vol. 252 ,pp.7856-7861, (2006).
 
[66]  Yangyang Sun , Zhuqing Zhang, C.P. Wong "Study on mono-dispersed nano-size silica by surface modification for underfill applications" Journal of Colloid and Interface Science, vol.292, pp.436-444, (2005).
 
[67]  Alaa Mohamed, T. A. Osman, A. Khattab" Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease" Tribology, Vol. 137, JANUARY 2015.
 
[68]  Qian Jianhua; Zhang Yu; Wang Lingling; Xing Jinjuan" Study on Lubrication Properties of Modified Nano ZnO in Base Oil" ChinaPetroleum Processing and Petrochemical Technology, Vol. 13, No. 3, pp. 69-73,2011.
 
[69]  Libo Wang, Bo Wang, X. Wang, W. Liu "Tribological investigation of CaF2 Nano crystals as grease additives" Tribology International ,vol.40 pp.1179-1185,(2007).
 
[70]  K. P. Lijesh1, S. M. Muzakkir1 and Harish Hirani "Experimental Tribological Performance Evaluation of Nano Lubricant Using Multi-Walled Carbon Nano-Tubes(MWCNT)" International Journal of Applied Engineering Research ,Volume 10, Number 6, pp. 14543-14551,(2015).
 
[71]  Gautam Anand and Prateek Saxena "A review on graphite and hybrid Nano-materials as lubricant additives "Materials Science and Engineering 149 (2016).
 
[72]  Danijel Pavkovi´c, Nenad Kranjˇcevi´c, Milan KostelacDesign of Normal Force Control System for a Pin-on-Disk Tribometer including Active and Passive Suppression of Vertical Vibrations" ATKAFF 54(3), (2013), PP. 364-375.
 
[73]  G. List , G. Sutter, J.J. Arnoux, A. Molinari, Study of friction and wear mechanisms at high sliding speed "Mechanics of Materials ,vol.80, pp.246-254, (2015).
 
[74]  Rong Liu, Qi Yang, Feng Gao" Tribological Behavior of Stellite 720 Coating under Block-on-Ring Wear Test "Materials Sciences and Applications, ( 2012), 3, pp.756-762.
 
[75]  S. R. Nam, C. W. Jung, C.-H. Choi, and Y. T. Kang, “Cooling performance enhancement of LED (light emitting diode) packages with carbon nanogrease,” Energy, vol. 60, pp. 195-203, 2013.
 
[76]  L. Peña-Parás, J. Taha-Tijerina, a. García, D. Maldonado, a. Nájera, P. Cantú, and D. Ortiz, “Thermal transport and tribological properties of nanogreases for metal-mechanic applications,” Wear, vol. 332-333, pp. 1322-1326, 2015.
 
[77]  L. Wang, M. Zhang, X. Wang, and W. Liu, “The preparation of CeF 3 nanocluster capped with oleic acid by extraction method and application to lithium grease,” Mater. Res. Bull., vol. 43, pp. 2220-2227, 2008.
 
[78]  X. Ji, Y. Chen, and G. Zhao, “Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease,” Tribol. Lett., vol. 41, no. 1, pp. 113-119, 2011.
 
[79]  L. Peña-Parás, J. Taha-Tijerina, a. García, D. Maldonado, a. Nájera, P. Cantú, and D. Ortiz, “Thermal transport and tribological properties of nanogreases for metal-mechanic applications,” Wear, vol. 332-333, pp. 1322-1326, 2015.
 
[80]  H. Chen, H. Wei, M. Chen, F. Meng, H. Li, and Q. Li, “Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes,” Appl. Surf. Sci., vol. 283, pp. 525-531, Oct. 2013.
 
[81]  S. R. Nam, C. W. Jung, C.-H. Choi, and Y. T. Kang, “Cooling performance enhancement of LED (light emitting diode) packages with carbon nanogrease,” Energy, vol. 60, pp. 195-203, 2013.