American Journal of Medical Sciences and Medicine
ISSN (Print): 2327-6681 ISSN (Online): 2327-6657 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Medical Sciences and Medicine. 2018, 6(2), 19-26
DOI: 10.12691/ajmsm-6-2-1
Open AccessArticle

Nanotechnological Approach to the Treatment of Diabetes

Araceli Ramirez1, , Griselda Corro1, Alfred Zehe1 and Andreas Thomas2

1Benemérita Universidad Autónoma de Puebla, Centro de Nanotecnología, Ciudad Universitaria, 72550 Puebla, México

2Medtronic GmbH, Earl-Bakken-Platz 1, D-40670 Meerbusch, Germany

Pub. Date: July 20, 2018

Cite this paper:
Araceli Ramirez, Griselda Corro, Alfred Zehe and Andreas Thomas. Nanotechnological Approach to the Treatment of Diabetes. American Journal of Medical Sciences and Medicine. 2018; 6(2):19-26. doi: 10.12691/ajmsm-6-2-1


Nanotechnology in diabetes research has facilitated the evolution of novel glucose measurement and insulin delivery systems. As type 1 diabetes mellitus needs treatment with insulin from the very beginning on, the objective of any kind of diabetes therapy is to reach nearly physiological glucose levels. The current view points toward a continuous insulin infusion by means of an insulin pump. It is desirable then, that a glucose sensor would automatically control the insulin supply, given that an insulin pump works only manually. Worldwide diabetes research activities at its interface with nanotechnology have created devices at the micro- or nanoscale by which the experimental approach toward an artificial pancreas is already put in practice. The article discusses some aspects of conventional glucose sensors, as well as basic concepts and developments in the field of nanotechnology and their application in the field of diabetes research. Some types of nanoscale sensors and functionalized nanostructures as insulin-delivery systems are looked at, that could act as an artificial pancreas.

artificial pancreas diabetes mellitus insulin nanomaterials nanoscale sensors

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 7


[1]  Etheridge, M.L., S.A. Cambell, A.G. Erdmann, C.L. Haynes, S.M. Wol, J. McCullough, The big picture on nanomedicine: The state of investigational and approved nanomedicine products, Nanomedicine: Nanotechnology, Biology, and Medicine 9, 1-14 (2013).
[2]  Cash, K. J., H. A. Clark, “Nanosensors and nanomaterials for monitoring glucose in diabetes”, Trends in Molecular Medicine, 16, 584-593 (2010).
[3]  “Diagnosis and Classification of Diabetes Mellitus”, Diabetes Care 2004, Suppl. 1, 27:s5-s10, American Diabetes Assoc. (2004); IDF Diabetes Atlas, 7. Edition 2015, International Diabetes Federation, (2015).
[4]  Agrawal, S., R. Prajapati, “Nanosensors and their pharmazeutical applications: a review”, MS ID: IJPSN-11-20-11-AGRAWAL, Int. J. Pharm. Sci. Nanotech. 4, 4 (2012).
[5]  Lerner, M. B., N. Kybert, R. Mendoza, R. Villechenon, M.l A. Bonilla Lopez, A.T. C. Johnson, “Scalable Non-Invasive Glucose Sensor Based on Boronic Acid Functionalized Carbon Nanotube Transistors”, arXiv:1304.7253 [cond-mat.mtrl-sci].
[6]  Nyitray, C. E., R. Chang, G Faleo, K. D. Lance, D.A. Bernards, Q. Tang, and T. A. Desai, “Polycaprolactone Thin-Film Micro-and Nanoporous Cell-Encapsulation Devices”, ACS Nano, 9, 5675-5682 (2015).
[7]  Mahendran, V., J. Philip, “Non-enzymatic glucose detection using magnetic nanoemulsions”, Appl. Phys. Lett. 105, 123110 (2016).
[8]  Zhang, B., R. B. Kumar, H. Dai, B. J. Feldman, “A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes”, Nature Medicine 20, 948-953 (2014).
[9]  Heo, Y.J., S. Takeuchi, “Towards smart tattoos: implantable biosensors for continuous glucose monitoring”, Adv Healthc Mater. 2, 43-56 (2013).
[10]  Zhang, Q., S. Yang, J. Zhang, L. Zhang, P. Kang, J. Li, J. Xu, H. Zhou, X. M. Song, “Fabrication of an electrochemical platform based on the self-assembly of grapheneoxide–multiwall carbon nanotube nanocomposites and horseradish peroxidase: direct electrochemistry and electrocatalysis”, Nanotechnology, 22, 49 (2011).
[11]  Balaconis, M. K., Y. Luo, H. A. Clark, “Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions”, Analyst 140, 716-723 (2015).
[12]  Gao, S. W., H. S. Peng , X. Xui Wang, F. T. You, F. Teng, H. Xia Wang, “Preparation of photoluminescent enzymatic nanosensors for glucose sensing”, Sensors and Actuators B, 222, 638-644 (2016).
[13]  El-Khatib, F.H., S.J. Russell, D.M. Nathan, R.G. Sutherlin, E.R. Damiano, “A bihormonal closed-loop artificial pancreas for type 1 diabetes”, Sci. Transl. Med. 2:27ra27 (2010)
[14]  Shahidadpury, V., A. Hirani, Y. Pathak, “Stem cell nano drug delivery applications to treat diabetes”, Europ. Pharm. Review May 2016
[15]  Choudhary, P., J. Shin, Y. Wang, M.L. Evans, P.J. Hammond, D. Kerr, J.A.M. Shaw, J.C. Pickup, S.A. Amiel, “Insulin Pump Therapy with automated insulin suspension in response to hypoglycemia – Reduction in nocturnal hypoglycemia in those at greatest risk”. Diabetes Care 34, 2023-2025 (2011).
[16]  Danne, T., O. Kordonouri, K. Remus, S. Bläsig, M. Holder, T. Wadien, H. Haberland, S. Golembowski, S. Zierow, R. Hartmann, A. Thomas, “Prevention of hypoglycaemia by using low glucose suspend function in sensor-augmented pump therapy”, Diabetes Technology & Therapeutics 13,1129-113 (2011).
[17]  Ly, T.T., J.A. Nicholas, A, Retterath, E.M. Lim, E.A. Davis, T.W. Jones, “Effect of Sensor-Augmented Insulin Pump Therapy and Automated Insulin Suspension vs Standard Insulin Pump Therapy in Patients with Type 1 Diabetes. A Randomized Clinical Trial”, JAMA 310, 1240-1247 (2013).
[18]  Danne, T., C. Tsioli, O. Kordonouri, S. Blaesig, K. Remus, A. Roy, B. Keenan, S.W. Lee, F.R. Kaufman, “Predictive Low Glucose Management with sensor augmented CSII in response to exercise”. Diabetes Technology and Therapeutics 16 (2014).
[19]  Shan, C., H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu. “Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing”, Biosensors and Bioelectronics. 25, 1070-74 (2010).
[20]  Zeng, X., X. Li, L. Xing, X. Liu, S. Luo, W. Wei, B. Kong B, Y. Li, “Electrodeposition of chitosan–ionic liquid–glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing”. Biosensors and Bioelectronics, 24, 2898–2903 (2009).
[21]  Weitai Wu, Ting Zhou, Jing Shen and Shuiqin Zhou, “Optical detection of glucose by CdS quantum dots immobilized in smart microgels”, Chem. Commun., 0, 4390-4392 (2009).
[22]  El-Khatib, F.H., S.J. Russell, D.M. Nathan, R.G. Sutherlin, E.R. Damiano, “A bihormonal closed-loop artificial pancreas for type 1 diabetes”, Sci Transl Med 22, 27 (2010).
[23]  Thomas, A., I. Zamora-Ginez, A. Ramírez, “Páncreas endocrino artificial - el anhelo de los pacientes con diabetes”, J. Nanociencias et Moletronica, 13, 2 (2015).
[24]  Dassau, E., F.M. Cameron, H. Lee, B.W. Bequette, F.J. Doyle, G. Niemeyer, P. Chase, B.A. Buckingham, “Real-time Hypoglycemia Prediction Using Continuous Glucose Monitoring (CGM), A Safety Net to the Artificial Pancreas”, Diabetes 57, A13 (2008).
[25]  Atlas, E., R. Nimri, S. Miller, E.A. Grunberg, M. Phillip, “MD logic artificial pancreas system: a pilot study in adults with type 1 diabetes”. Diabetes Care 33, 1072-1076 (2010).
[26]  Perez-Gandıa, C, A. Facchinetti, G. Sparacino, C. Cobelli, E.J. Gomez, M. Rigla, A. de Leiva, M.E. Hernando, “Artificial Neural Network Algorithm for Online Glucose Prediction from Continuous Glucose Monitoring”, Diabetes Technol. Ther. 12, 81-88 (2010).
[27]  Yetisen, A.K., Y. Montelongo, F. da Cruz-Vasconcellos, J.L. Martinez-Hurtado, S. Neupane, H. Butt, M.M. Qasim, J. Blyth, K. Burling, J.B. Carmody, “Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor”, Nano Letters 14, 3587-93 (2014).
[28]  McNichols, R. J., G. L. Cote´, “Optical glucose sensing in biological fluids: an overview”, J. Biomed. Optics 5, 5-16 (2000).
[29]  Stuart, D.A., J.M. Yuen, N. Shah, O. Lyandres, C.R. Yonzon, M.R. Glucksberg, J.T. Walsh, R.P. Van Duyne, “In Vivo Glucose Measurement by Surface-Enhanced Raman Spectroscopy”, Analytical Chemistry 78, 7211-7215 (2006).
[30]  He, H., X. Xu, H. Wu, Y. Jin, “Enzymatic Plasmonic Engineering of Ag/Au Bimetallic Nanoshells and Their Use for Sensitive Optical Glucose Sensing”. Adv. Mater., 24, 1736-1740 (2012).
[31]  Allhoff, F., P.Lin, D.Moore, “The basics of nanotechnology” .In: What Is Nanotechnology and Why Does It Matter? From Science to Ethics. New York, NY: John Wiley; 2010: 1-19.
[32]  Brown, J.Q., M.J. McShane, “Modeling of spherical fluorescent glucose microsensor systems: design of enzymatic smart tattoos”, Biosens Bioelectron. 21, 1760-1769 (2006).
[33]  Thomas, A., E. Torres, A. Ramírez, A. Zehe, “Las nanopartículas- Nanomateriales de tantas aplicaciones asombrosas en nanomedicina y nanotecnología biomédica”, Internet Electron. J Nanocs Moletrón. 13, 2315-2326 (2015).
[34]  Radushkewitsch, L.K., V.M. Lukjanowitsch, “O struktura ugleroda, obrazujucegosja pri termitscheskom razlozenii okisi uglerodana zeleznom kontakte”. J. Fis. Chim. 26, 88-95 (1952).
[35]  Iijima, S., T. Ichihashi, “Single shell carbon nanotubes of 1 nm diameter”. Nature 363, 603-605 (1993).
[36]  Barone, P.W., M.S. Strano, “Single walled carbon nanotubes as reporters for the optical detection of glucose”, J. Diabetes Sci. Technol. 3, 242-252 (2009).
[37]  Zhu, Z., W. Song, K. Burugapalli, F. Moussy, Y.L. Li, X.H. Zhong, “Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor”, Nanotechnology 21, 165501 (2010).
[38]  Hyunjae, ] L. T.K. Choi, Y.B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T. D. Chung, N. Lu, T. Hyeon, S.H. Choi, D.H. Kim, “A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy”, Nature Nanotechnology 11, 566-572 (2016).