American Journal of Medical Sciences and Medicine
ISSN (Print): 2327-6681 ISSN (Online): 2327-6657 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Medical Sciences and Medicine. 2017, 5(4), 79-90
DOI: 10.12691/ajmsm-5-4-3
Open AccessArticle

The Effect of Dopamine versus Norepinephrine on the Outcome of Pediatric Septic Shock

Miriam Magdy Aziz1, , Hala Mohammed Amin Fouad1, Taher H1 and Abdel Rahman Emam Sayed Amin2

1Pediatrics, Faculty of Medicine, Cairo University

2MSc Pediatrics, Cairo University

Pub. Date: December 15, 2017

Cite this paper:
Miriam Magdy Aziz, Hala Mohammed Amin Fouad, Taher H and Abdel Rahman Emam Sayed Amin. The Effect of Dopamine versus Norepinephrine on the Outcome of Pediatric Septic Shock. American Journal of Medical Sciences and Medicine. 2017; 5(4):79-90. doi: 10.12691/ajmsm-5-4-3


Background: Septic shock is a leading cause of mortality and morbidity among children all over the world. Vasoactive therapy must be initiated in patients who have not improved after fluid resuscitation. Aim of work: The aim of this study was to compare the effect of dopamine versus norepinephrine on the outcome of pediatric septic shock. Patients and methods: The study was a prospective observational study that was conducted on 40 children aged from 1 month to 12 years who were admitted to the emergency department. They were assigned by the treating physicians to two groups: 1) Group A: 20 patients who received dopamine (5-20 mcg/kg/min). 2) Group B: 20 patients who received norepinephrine (1-1.5 mcg/kg/min). Clinical, hemodynamic, and laboratory data were recorded and compared using appropriate statistical tests. Results: Baseline characteristics for the 40 children enrolled were nearly similar. There was a significantly higher mortality rate in the dopamine group compared with the norepinephrine one (P < 0.05). As in the dopamine group, 15 patients died out of 20 patients, while in the norepinephrine group 8 patients died out of 20 patients, (75% vs. 40%, p=0.025). Stepwise logistic regression analysis revealed that PRISM-24 (p=0.001), drug (p=0.019), and MODS (p=0.003) could independently predict the mortality in septic shock patients. Conclusions: Norepinephrine was associated with an increased response to treatment and decreased risk of death in children with septic shock as compared to dopamine. Dopamine, PRISM-24, and MODS could independently predict the mortality in children with septic shock.

children septic shock mortality dopamine norepinephrine outcome

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL ; International Surviving Sepsis Campaign Guidelines Committee; American Association of Critical-Care Nurses; American College of Chest Physicians; American College of Emergency Physicians; Canadian Critical Care Society; European Society of Clinical Microbiology and Infectious Diseases; European Society of Intensive Care Medicine; European Respiratory Society; International Sepsis Forum; Japanese Association for Acute Medicine; Japanese Society of Intensive Care Medicine; Society of Critical Care Medicine; Society of Hospital Medicine; Surgical Infection Society; World Federation of Societies of Intensive and Critical Care Medicine. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008
[2]  Hollenberg SM. Vasopressor support in septic shock. Chest 2007; 132: 1678-87.
[3]  Goldstein B, Giroir B, Randolph A; International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005; 6: 2-8.
[4]  Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated Pediatric Risk of Mortality score. Crit Care Med. 1996; 24: 743-52
[5]  Carcillo JA. A synopsis of 2007 ACCM clinical practice parameters for hemodynamic support of term newborn and infant septic shock. Early Human Development 2014; 90: S45-7.
[6]  Andropoulos DB. Pediatric Normal Laboratory Values. In: Gregory GA, Andropoulos DB (Eds.), Gregory’s Pediatric Anesthesia (5th Ed.).New York, NY, USA, Blackwell Publishing Ltd 2012:1301-14.
[7]  Chan YH (a). Biostatistics102: quantitative data – parametric & non-parametric tests. Singapore Med J 2003; 44: 391-6.
[8]  Chan YH (b). Biostatistics 103: Qualitative Data –Tests of Independence. Singapore Med J 2003; 44: 498-503.
[9]  Chan YH. Biostatistics 202: logistic regression analysis. Singapore Med J 2004; 45: 149-53.
[10]  Ventura AM, Shieh HH, Bousso A, Góes PF, de Cássia FO Fernandes I, de Souza DC, Paulo RL, Chagas F, Gillio AE. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as First-line vasoactive drugs in pediatric septic shock. Crit Care Med 2015; 43: 2292-302.
[11]  Ramaswamy KN, Singhi S, Jayashree M, Bansal A, Nallasamy K. Double-Blind Randomized Clinical Trial Comparing Dopamine and Epinephrine in Pediatric Fluid-Refractory Hypotensive Septic Shock. Pediatr Crit Care Med 2016; 17:e502-12.
[12]  Irazuzta J, Sullivan KJ, Garcia PC, Piva JP. Pharmacologic support of infants and children in septic shock. J pediatr (Rio J) 2007; 83: 36-45.
[13]  Ranjit S, Aram G, Kissoon N, Ali MK, Natraj R, Shresti S, Jayakumar I, Gandhi D. Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: a pilot observational study*. Pediatr Crit Care Med 2014; 15: e17-26.
[14]  Davis AL, Carcillo JA, Aneja RK, Deymann AJ, Lin JC, Nguyen TC, Okhuysen-Cawley RS, Relvas MS, Rozenfeld RA, Skippen PW, Stojadinovic BJ, Williams EA, Yeh TS, Balamuth F, Brierley J, de Caen AR, Cheifetz IM, Choong K, Conway E Jr, Cornell T, Doctor A, Dugas MA, Feldman JD, Fitzgerald JC, Flori HR, Fortenberry JD, Graciano AL, Greenwald BM, Hall MW, Han YY, Hernan LJ, Irazuzta JE, Iselin E, van der Jagt EW, Jeffries HE, Kache S, Katyal C, Kissoon NT, Kon AA, Kutko MC, MacLaren G, Maul T, Mehta R, Odetola F, Parbuoni K, Paul R, Peters MJ, Ranjit S, Reuter-Rice KE, Schnitzler EJ, Scott HF, Torres A Jr, Weingarten-Abrams J, Weiss SL, Zimmerman JJ, Zuckerberg AL. American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Crit Care Med 2017; 45: 1061-93.
[15]  Sankar J, Sankar MJ, Suresh CP, Dubey NK, Singh A. Early goal-directed therapy in pediatric septic shock: comparison of outcomes “with” and “without” intermittent superior venacaval oxygen saturation monitoring: a prospective cohort study. Pediatr Crit Care Med 2014; 15: 157-67.
[16]  Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo A, Singhi SC, Erickson S, Roy JA, Bush JL, Nadkarni VM, Thomas NJ; Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: The sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med 2015; 191:1147-57.
[17]  Agrawal A, Gupta A, Consul S, Shastri P. Comparative study of dopamine and norepinephrine in the management of septic shock. Saudi J Anaesth 2011; 5: 162-6.
[18]  De Backer D, Aldecoa C, Nijmi H, Vincent JL. Dopamine versus norepinephrine in the treatment of septic shock: a meta- analysis. Crit Care Med. 2012; 40: 725-30.
[19]  Oba Y, Lone NA. Mortality benefit of vasopressor and inotropic agents in septic shock: a Bayesian network meta-analysis of randomized controlled trials. J Crit Care 2014; 29: 706-10.
[20]  Avni T, Lador A, Lev S, Leibovici L, Paul M, Grossman A. Vasopressors for the Treatment of Septic Shock: Systemic Review and Meta-Analysis. PLoS ONE: 2015; 10: e1209305.
[21]  Zhang Z, Chen K. Vasoactive agents for the treatment of sepsis. Ann Transl Med 2016; 4: 333.
[22]  Pei XB, Ma PL, Li JG, Du ZH, Zhou Q, Lu ZH, Yun L, Hu B. Extensive variability in vasoactive agent therapy: a nationwide survey in Chinese intensive care units. Chin Med J (Engl) 2015; 128: 1014-20.
[23]  De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, Brasseur A, Defrance P, Gottignies P, Vincent JL; SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010; 362: 779-89.
[24]  Havel C, Arrich J, Losert H, Gamper G, Mullner M, Herkner H. Vasopressors for hypotensive shock. Cochrane Database syst Rev 2011; (5): CD 003709.
[25]  Singhal S, Allen MW, McAnnally JR, Smith KS, Donnelly JP, Wang HE. National estimates of emergency department visits for pediatric severe sepsis in the United States. PeerJ 2013; 1: e79.
[26]  Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis. Pediatr Crit Care Med 2013; 14: 686-93.
[27]  Ygberg S, Nilsson A. The developing immune system - from foetus to toddler. Acta Paediatr 2012; 101: 120-7.
[28]  Brierly J, Carcillo JA, Choong k, Cornell T, Decaen A, Deymann A, Doctor A, Davis A, Duff J, Dugas MA, Duncan A, Evans B, Feldman J, Felmet K, Fisher G, Frankel L, Jeffries H, Greenwald B, Gutierrez J, Hall M, Han YY, Hanson J, Hazelzet J, Hernan L. Kiff J, Kissoon N, Kon A, Irazuzta J, Lin J, Lorts A, Mariscalco M, Mehta R, Nadel S, Nguyen T, Nicholson C, Peters M, Okhuysen-Cawley R, Poulton T, Relves M, Rodriguez A, Rozenfeld R, Schnitzler E, Shanley T, Kache S, Skippen P, Torres A, von Dessauer B, Weingarten J, Yeh T, Zaritsky A, Stojadinovic B, Zimmerman J, Zuckerberg A. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med 2009; 37: 666-88.
[29]  García-Gómez E, González-Pedrajo B, Camacho-Arroyo I. Role of sex steroid hormones in bacterial-host interactions. Biomed Res Int 2013; 2013: 928290.
[30]  Jaramillo-Bustamante JC, Martin-Agudelo A, Fernández-Laverde M, Bareno-Silva J. Epidemiology of sepsis in pediatric intensive care units. Pediatr Crit Care Med 2012; 13: 501-8.
[31]  Qureshi AU, Ali AS, Ahmad TM. Comparison of three prognostic scores (PRISM, PELOD and PIM2) at pediatric intensive care unit under Pakistani circumstances. J Ayub Med Coll Abbottabad 2007; 19:49-53.
[32]  Rudan I, Boschi-Pinto C, Biloglav Z, Mulholland K, Campbell H. Epidemiology and etiology of childhood pneumonia. Bull World Health Organ 2008; 86: 408-16.
[33]  Rudan I, O'Brien KL, Nair H, Liu L, Theodoratou E, Qazi S, Lukšić I, Walker CL, Black RE, Campbell H; Child Health Epidemiology Reference Group (CHERG). Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J Glob Health 2013; 3: 10401.
[34]  Myint TT, Madhava H, Balmer P, Christopoulou D, Attal S, Menegas D, Sprenger R, Bonnet E. The impact of 7-valent pneumococcal conjugate vaccine on invasive pneumococcal disease: a literature review. Adv Ther 2013; 30: 127-51.
[35]  Beeler JA, Eichelberger MC. Influenza and respiratory syncytial virus (RSV) vaccines for infants: safety, immunogenicity, and efficacy. Microb Pathog 2013; 55: 9-15.
[36]  Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, Kauppila J, Leinonen M, McCracken GH. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics 2004; 113: 701-7.
[37]  Leclerc F, Leteurtre S, Duhamel A, Grandbastien B, Proulx F, Martinot A, Gauvin F, Hubert P, Lacroix J. Cumulative influence of organ dysfunctions and septic state on mortality of critically ill children. Am J Respir Crit Care Med 2005; 171: 348-53.
[38]  Typpo KV, Petersen NJ, Hallman DM, Markovitz BP, Mariscalco MM. Day 1 multiple organ dysfunction syndrome is associated with poor functional outcome and mortality in the pediatric intensive care unit. Pediatr Crit Care Med 2009; 10: 562-70.
[39]  Herget-Rosenthal S, Saner F, Chawla LS. Approach to hemodynamic shock and vasopressors. Clin J Am Soc Nephrol 2008; 3: 546-53.
[40]  Oberbeck R, Schmitz D, Wilsenack K, Schuler M, Husain B, Schedlowski M, Exton MS. Dopamine affects cellular immune functions during polymicrobial sepsis. Intensive Care Med 2006; 32: 731-9.
[41]  Mathur SK, Dhunna R, Chakraborty A. Comparison of norepinephrine and dopamine in the management of septic shock using impedance cardiography. Indian J Crit Care Med 2007; 11: 186-91.
[42]  Guerin JP, Levraut J, Samat-Long C, Leverve X, Grimaud D, Ichai C. Effects of dopamine and norepinephrine on systemic and hepatosplanchnic hemodynamics, oxygen exchange, and energy balance in vasoplegic septic patients. Shock 2005, 23: 18-24.
[43]  LeDoux D, Astiz ME, Carpati CM, Rackow EC. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 2000; 28:2729-32.
[44]  Teixeira C, Frederico Tonietto T, Cadaval Gonçalves S, Viegas Cremonese R, Pinheiro de Oliveira R, Savi A, Silvestre Oliveira E, André Cardona Alves F, Fernando Monteiro Brodt S, Hervê Diel Barth J, Santana Machado A, de Campos Balzano P, Gasparetto Maccari J, Brandão Da Silva N. Noradrenaline use is not associated with extubation failure in septic patients. Anaesth Intensive Care 2008; 36: 385-90.
[45]  Ranjit S, Natraj R, Kandath SK, Kissoon N, Ramakrishnan B, Marik PE. Early norepinephrine decreases fluid and ventilatory requirements in pediatric vasodilatory septic shock. Indian J Crit Care Med 2016; 20: 561-9.
[46]  Thiery-Antier N, Binquet C, Vinault S, Meziani F, Boisramé-Helms J, Quenot JP; EPIdemiology of Septic Shock Group. Is Thrombocytopenia an Early Prognostic Marker in Septic Shock? Crit Care Med 2016; 44: 764-72.
[47]  Jones DP, Chesney RW. Tubular Function Potassium and Acid-Base. In: Pediatric Nephrology, Avner ED, Harmon WE, Niaudet P (Eds). Lippincott Williams & Williams, Philadelphia; 2004: 59.
[48]  Chan JC, Mak RH. Acid-base homeostasis. In: Avner ED, Harmon WE, Niaudet P : Pediatric Nephrology, 5th ed. Lippincott Williams & Williams, Philadelphia; 2004: 189-208.
[49]  Maciel AT, Noritomi DT, Park M. Metabolic acidosis in sepsis. Endocr Metab Immune Disord Drug Targets 2010; 10: 252-7.
[50]  Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech S, Nyeko R, Mtove G, Reyburn H, Lang T, Brent B, Evans JA, Tibenderana JK, Crawley J, Russell EC, Levin M, Babiker AG, Gibb DM; FEAST Trial Group. Mortality after fluid bolus in African children with severe infection. N Engl J Med 2011; 364: 2483-95.
[51]  Marcin JP, Slonim AD, Pollack MM, Ruttimann UE. Long-stay patients in the pediatric intensive care unit. Crit Care Med 2001; 29: 652-7.
[52]  Shrestha P, Mohan A, Sharma S, Guleria R, Vikram N, Wig N et al. To Determine the Predictors of Mortality and Morbidity of Sepsis in Medical ICU of All India Institute of Medical Sciences (AIIMS) New Delhi, India: 2012. Chest 2012; 142: 407.
[53]  El Hamshary AA, El Sherbini SA, Elgebaly HF, Amin SA. Prevalence of multiple organ dysfunction in the pediatric intensive care unit: Pediatric Risk of Mortality III versus Pediatric Logistic Organ Dysfunction scores for mortality prediction. Rev Bras Ter Intensiva 2017; 29: 206-12.
[54]  Kaur G, Vinayak N, Mittal K, Kaushik JS, Aamir M. Clinical outcome and predictors of mortality in children with sepsis, severe sepsis, and septic shock from Rohtak, Haryana: A prospective observational study. Indian J Crit Care Med 2014; 18: 437-41.
[55]  Kim YA, Ha EJ, Jhang WK, Park SJ. Early blood lactate area as a prognostic marker in pediatric septic shock. Intensive Care Med 2013; 39: 1818-23.