American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: http://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2018, 6(1), 7-11
DOI: 10.12691/ajmse-6-1-2
Open AccessArticle

Frequency Modulation Study of a Monofacial Solar Cells Based on Copper Indium and Gallium Diselenide (CIGS) under Monochromatic Illumination: Influence of Incidence Angle and Gallium Doping

Gerome SAMBOU1, , Alain Kassine EHEMBA1, Mouhamadou Mamour SOCE1, Amadou DIAO1 and Moustapha DIENG1

1Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, - University Cheikh Anta Diop - Dakar - SENEGAL

Pub. Date: April 26, 2018

Cite this paper:
Gerome SAMBOU, Alain Kassine EHEMBA, Mouhamadou Mamour SOCE, Amadou DIAO and Moustapha DIENG. Frequency Modulation Study of a Monofacial Solar Cells Based on Copper Indium and Gallium Diselenide (CIGS) under Monochromatic Illumination: Influence of Incidence Angle and Gallium Doping. American Journal of Materials Science and Engineering. 2018; 6(1):7-11. doi: 10.12691/ajmse-6-1-2

Abstract

In this article a frequency modulation study on a CIGS-based solar cells under the influence of incidence angle and gallium doping is made. The resolution of the minority carrier continuity equation allowed us to determine the density of minority carriers, the photocurrent density and photovoltage expressions according to modulation frequency, wavelength, incidence angle and gallium doping. Incidence angle and Gallium doping tend to decrease the performance of the solar cell by degrading its intrinsic properties.

Keywords:
CIGS frequency modulation wavelength incidence angle gallium doping photocurrent photovoltage

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  P. Jackson, D. Hariskos, R.Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, “Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%”, Phys Status, Solidi RRL 9 (2015) 28-31.
 
[2]  P. D. Paulson, R. W. Birkmire, and W. N. Shafarman. “Optical characterization of Cu(In,Ga)Se2 alloy thin films by spectroscopic ellipsometry”.Journal of Applied Physics, 94(2), (2003) 879.
 
[3]  O. Lundberg, M. Edoff, L. Stolt, “The effect ofGa-grading in CIGS thin film solar cells”, Thin Solid Films 480-481 (2005) 520-525.
 
[4]  A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R.Noufi, D.G. Jensen, A.M.Hermann, “Band-gap engineering in Cu(In,Ga) Se2 thin films grown from (In,Ga)2Se3 precursors”, Sol. Energy Mater. Sol. Cells 41-42 (1996) 247-260.
 
[5]  Ibrahima WADE*, Mor NDIAYE, Alain Kassine EHEMBA, Demba DIALLO, Moustapha DIENG «Junction recombination velocity determination initiating the short-circuit and limiting the open circuit of a monofacialesolar cells containing thin film Cu(In,Ga)Se2 (CIGS) under horizontal illumination in static mode», IJESRT,4 (9), (September, 2015).
 
[6]  Jean Jude Domingo, Alain Kassine Ehemba, Demba Diallo, Ibrahima Wade and MoustaphaDieng. «Study of the capacity of a manofacial solar cell based on CIGS under horizontal monochromatic illumination in frequency dynamic mode: the effect of the wavelength» Int. J. Adv. Res. 4(11), (23 November 2016), 711-719.
 
[7]  N. Honma and C. Munakata, «Sample thickness dependence of minority carrier lifetimes measured using an ac photovoltaic method», Japan. J. Appl. Phys. 26, (1987) 2033-6.
 
[8]  A. Dieng, I. Zerbo, M. Wade, A. S. Maiga et G. Sisoko, «Three-dimensional study of a polycrystalline silicon solar cell: the influence of the applied magnetic field on the elctrical parameters», Semicond. Sci. Technol. 26, (2011) pp: 5023-5032.
 
[9]  J. N. Hollenhorst et G. Hasnain, «Frequency dependent whole diffusion in InGaAs double heterostructure» Appl. Phys. Lett, 65(15): (1995) 2203-2205.
 
[10]  F. Ahmed et S. Garg, «simultaneous determination of diffusion length, lifetime and diffusion constant of minority carrier using a modulated beam» International Atomic Energy Agency. International centre for theorical physics. Internal report IC/86/129, 1987.
 
[11]  J. Dugas, «3D modelling of a reverse cell made with improved multicrystalline silicon wafers». Solar Energy Materials and Solar Cells Volume 32. Issue 1, (January 1994). Pages71-88.
 
[12]  T. Flohr et R. Helbig, «Determination of minority-carrier lifetime and surface recombination velocity by Optical-Beam-Iduced-Current measurements at different light wavelengths» J. Appl. Phys. Vol. 66(7), (1989) pp. 3060-3065.
 
[13]  Sissoko, G., Museruka, C., Corréa, A., Gaye, I. and Ndiaye, A. L. (1996) Light Spectral Effect on Recombination Parameters of Silicon Solar Cell. World Renewable Energy Congress, Part III, 1487-1490.
 
[14]  Morales-Acevedo «Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells». Solar Energy Materials & Solar Cells 93 (2009) 41-44.
 
[15]  U. Rau andH.W. Schock. «Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges». AppliedPhysics A: Materials Science & Processing, 69(2), (August 1999) 131-147.
 
[16]  Sunghun Jung, SeJinAhn, Jae Ho Yun, JihyeGwak, Donghwan Kim, Kyunghoon Yoon a,* «Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique» Current Applied Physics 10 (2010) 990-996.