American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2017, 5(1), 37-42
DOI: 10.12691/ajmse-5-1-5
Open AccessArticle

Structural Order of Clays from Gounioube’s Deposit (Ivory Coast): Study by Electron Paramagnetic Resonance Spectroscopy

Jean-Pierre S. Sagou1, , Séka Simplice Kouassi2, Lébé Prisca M.-S. Kouakou1, Léon Koffi Konan1, Y. J. Andji-Yapi1 and Thierry Allard3

1Laboratory of Materials Inorganic Chemistry, Felix Houphouet BOIGNY University, Abidjan, 22 Po box BP 582 Abidjan 22, Abidjan, Ivory Coast

2Laboratory of Environmental and Materials Chemistry, Jean Lorougnon GUEDE University, Daloa, Po box 150 Daloa, Ivory Coast

3Institut de Minéralogie et de Physique des Milieux Condensés, UMR CNRS 7590, Universités Paris 6 et 7, IPGP, 140 rue de Lournel, 75015 Paris, France

Pub. Date: September 29, 2017

Cite this paper:
Jean-Pierre S. Sagou, Séka Simplice Kouassi, Lébé Prisca M.-S. Kouakou, Léon Koffi Konan, Y. J. Andji-Yapi and Thierry Allard. Structural Order of Clays from Gounioube’s Deposit (Ivory Coast): Study by Electron Paramagnetic Resonance Spectroscopy. American Journal of Materials Science and Engineering. 2017; 5(1):37-42. doi: 10.12691/ajmse-5-1-5


Cristallinity in kaolin samples from Gounioube’s deposit is studied. For this purpose, the behavior of iron and electronic defects related to irradiation damage in these clays is examined by using Electron Paramagnetic Resonance spectroscopy measurements, which point out the presence of structural defects in these materials. A deep inspection carried out by comparison of raw and bleached samples also confirms poorly cristallized samples kaolinite.

clays kaolin epr cristallinity iron status structural defects

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 8


[1]  Boussen S., Sghaier, D., Chaabani, F., Jamoussi, B., Bennour A., “Characteristics and industrial application of the Lower Cretaceous clay deposits (Bouhedma Formation). Southeast Tunisia: Potential use for the manufacturing of ceramic tiles and bricks”, Applied Clay Science, 123. 210-221. Avril 2016.
[2]  Dondi M., Raimondo M., Zanelli C., “Clays and bodies for ceramic tiles: Reappraisal and technological classification”. Applied Clay Science, 96, 91-109, July 1994.
[3]  Wahyuni A. S., Gunawan A., “Performance of Clay Brick of Bengkulu”. Procedia Engineering, 95. 504-509. 2014.
[4]  Gencel, O., “Characteristics of fired clay bricks with pumice additive”. Energy and Buildings, 102. 217-224. 2015.
[5]  De Silva G.S., Surangi M.L.C., “Effect of waste rice husk ash on structural, thermal and run-off properties of clay roof tiles”. Construction and Building Materials, 154. 251-257. 2017.
[6]  Sultana M. S., Ahmed A. N., Zaman M. N. Rahman M. A., Nandy P. K., “Utilization of hard rock dust with red clay to produce roof tiles”. Journal of Asian Ceramic Societies, 3(1). 22-26. March 2015.
[7]  Ngun B. K., Mohamad H., SulaimanS K, Okada K, Ahmad Z. A., “Some ceramic properties of clays from central Cambodia”. Applied Clay Science, 53(1). 33-41. July 2011.
[8]  De Miranda S., Patruno L., Ricci V., Saponelli R., Ubertini F., “Ceramic sanitary wares: Prediction of the deformed shape after the production process”. Journal of Materials Processing Technology, 215. 309-319. 2015.
[9]  Jollivet P., Gin S., Schumacher S., “Forward dissolution rate of silicate glasses of nuclear interest in clay-equilibrated groundwater”. Chemical Geology, 330-331. 207-217. November 2012.
[10]  Sx Y. “A comparative study on the illite crystallinity and the clay mineral reflectance spectral index for subdividing the very low-grade metamorphic belt along the Lizhou-Hekou geological section in the Youjiang sedimentary basin, Guangxi, China”. Science in China, Series D-Earth Sciences, 47(9). 834-845. 2004.
[11]  Kühnel R. A., Roorda H. J., Steensma J. J., “The Crystallinity of Minerals-A New Variable in Pedogenetic Processes: A Study of Goethite and Associated Silicates in Laterites”. Clays and Clay Minerals, 23. 349-354. 1975.
[12]  Andji Y.Y. J., Toure A., Kra G., Juma J.C., Yvon J., Blanchart P., “Iron role on mechanical properties of ceramics with clays from Ivory Coast”. Ceramics International, 35. 571-577. March 2009.
[13]  Andji J. Y. Y., Kouakou L. P. M.-S., Touré A. A., Kra G. “Morphométrie Quantitative des Echantillons du Gisement de Gounioubé”. European Journal of Scientific Research, 124(3). 367-376. Sepetmber 2014.
[14]  Andji, Y.Y. J., “Contribution to the mineralogical and physicochemical characterization of clays from Gounioubé”. Thèse 3èm cycle, Université de Cocody Abidjan, Côte d’Ivoire. 154 pages. 1998.
[15]  Kouakou L. P. M.-S., Andji-Yapi Y. J., Coulibaly Y., “Mineralogy, geochemistry of clay raw material from Ivory Coast (West Africa) used as pharmaceutical products”. J. Soc. Ouest-Afr. Chim., 034. 38- 44. 2012.
[16]  Dorthe J. P. (1964): “Etude des gisements d’argiles dans la région de Gounioubé”. Rapport SODEMI, 84. 1964.
[17]  Batista A.H., Melo V.F., Gilkes R., “Scanning and transmission analytical electron microscopy (STEM-EDX) identifies minor minerals and the location of minor elements in the clay fraction of soil”. Applied Clay Science, 135. 447-456. January 2017.
[18]  Fan S.-S., Chang F.-H., Hsueh H.-T., Ko T.-H., “Measurement of Total Free Iron in Soils by H2S Chemisorption and Comparison with the Citrate Bicarbonate Dithionite Method”. Journal of Analytical Methods in Chemistry, Article ID 7213542. 7 pages. December 2016.
[19]  Dethier D. P., Birkeland P. W., McCarthy J. A., “Using the accumulation of CBD-extractable iron and clay content to estimate soil age on stable sur-faces and nearby slopes, Front Range, Colorado”. Geomorphology, 173-174. 17-29. November 2012.
[20]  Mehra O.P., Jackson M.L., “Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate” in Seventh National conference on Clays and Clay Minerals, 7. 317-327. 1960.
[21]  Andji, Y.Y. J., “Caractérisation, typologie et propriétés d’usage des argiles du site de Gounioubé (Côte d’Ivoire)”. Thèse de doctorat d’état. Université de Cocody, Abidjan, Côte d’Ivoire. 234 pages. 2006.
[22]  Lombardi K. C., Guimarães J. L., Mangricha A. S., Mattoso N., Abbate M., Schreiner W. H., Wypych F. “Structural and Morphological Characterization of the PP-0559 Kaolinite from the Brazilian Amazon Region”. J. Braz. Chem. Soc., 13(2). 270-275. 2002.
[23]  Andji, Y. Y J., Touré A. A., Kra, G., et Yvon, J., “Variability of clays from Gounioube deposit (Ivory Coast)”. Journal of Applied Science, 9(7). 1238-1274. 2009.
[24]  Liétard O., “Contribution à l'étude des propriétés physicochimiques, cristallographiques et morphologiques des kaolins”. Thèse unique, Institut National Polytechnique de Lorraine, Nancy, France. 322 pages. 1977.
[25]  Cases J.M., Lietard O., Yvon J., Delon J.F. “Etude des propriétés cristallochimiques morphologiques et superficielles de kaolinites désordonnées”. Bull. Min. 105, 439-457. 1982.
[26]  Bertolino L. C., Rossi A. M., Scorzelli R. B., Torem M. L.,“Influence of iron on kaolin whiteness: An electron paramagnetic resonance study”. Applied Clay Science, 49. 170-175. October 2010.
[27]  Lombardi K. C., Mangrich A. S, Wypych F., Rodrigues-Filho U. P., Guimarães J. L., Schreiner W. H. “Sequestered carbon on clay mineral probed by electron paramagnetic resonance and X-ray photo electron spectroscopy”. Journal of Colloid and Interface Science, 295. 135-140, March 2006.
[28]  Muller J.P., Calas G., “Tracing kaolinites trough their defect centers: kaolinite paragenesis in a laterite (Cameroon) ”. Econ. Geol., 84. 694-707. 1989.
[29]  Hall P.L. “Clays: Their significance, properties, origins and uses; in a handbook of Determinative Methods in Clay Mineralogy”. Wilson M.J. editors. BLACKIE, 1987.
[30]  Meads R.E., Malden P.J., “Electron spin resonance in natural kaolinites containing Fe3+ and other transition métal ions”. Clay minerals, 10. 313-345. July 1975.
[31]  Gardolinski J.E., Filho H.P. M., Wypych F., “Thermal behavior of hydrated kaolinite”, Quím. Nova, 26(1). 30-35. 2003.
[32]  Bonnin D., Muller S., Calas G., “Le fer dans les kaolins. Etude par spectrométries RPE, Mössbauer, EXAFS”. Bull. Minéral, 105. 467- 475. 1982.
[33]  Angel B.R. and Vincent W.E.J., “Electron resonance studies of iron oxides associated with the surface of kaolins”. Clays and Clay Minerals, 26. 263-272. August 1978.
[34]  Andji J. Y. Y., Sei J., Touré A. A., Kra G., Njopwouo D., “Caractérisation minéralogique de quelques échantillons d’argile du site de Gounioube (Côte d’Ivoire)”. J. Soc. Ouest-Afr. Chim., 011. 143- 166. 2001.
[35]  Bertolino L. C., Rossi A. M., Scorzelli R. B., Torem M. L., “Influence of iron on kaolin whiteness: An electron paramagnetic resonance study”. Applied Clay Science, 49(3). 170-175. July 2010.
[36]  Malengreau N., Muller J-P, Calas G., “Fe-speciation in kaolins: a diffuse reflectance study”. Clays and Clay Minerals, 42. 137-147. April 1994.
[37]  Delineau T. “Les argiles kaoliniques du basin des Charentes: analyses typologiques, cristallochimiques, spéciation du fer et applications”. Thèse unique, Institut national Polytechnique de Lorraine, Nancy, France. 627 pages. 1994.
[38]  Delineau T., Allard T., Muller J.P., Barres O., Yvon J., Cases J.M., “FTIR reflectance vs. EPR studies of structural iron in kaolinites”. Clays and Clay minerals, 42(3). 308-320. June 1994.