American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2017, 5(1), 17-27
DOI: 10.12691/ajmse-5-1-3
Open AccessArticle

Structural and Characteristics Change of Water Hyacinth Fiber due to Combine Effect of Plasma and Nano-technology

Hari Prakash. N1, Mariammal. M1, Infant Solomon1, Bornali Sarma1 and Arun Sarma1,

1Division of Physics, School of Advanced Sciences (SAS), VIT University Chennai campus, Chennai 127, Tamilnadu, India

Pub. Date: June 19, 2017

Cite this paper:
Hari Prakash. N, Mariammal. M, Infant Solomon, Bornali Sarma and Arun Sarma. Structural and Characteristics Change of Water Hyacinth Fiber due to Combine Effect of Plasma and Nano-technology. American Journal of Materials Science and Engineering. 2017; 5(1):17-27. doi: 10.12691/ajmse-5-1-3


Water hyacinth [Eichhornia crassipes] fiber has been treated using DC glow discharge plasma to make its surface more hydrophobic in nature for various applications. The plasma treated fibers have been coated with synthesized phase pure ZnO nano-particle at room temperature to enhance both hydrophobicity and Ultra Violet [UV] light protection rate. The behavioral changes of fibers and its characteristics have been studied using XRD, SEM, EDS, a ATR-FTIR and TGA. Surface chemistry of the treated fiber has been altered as depicted by ATR-FTIR studies, while the improve degree of crystallinity analysed by XRD shows the effects of molecular structure of the fibers. The hydrophobic nature of the fibers has been recognized by contact angle measurement using Goniometer and by water absorption processes. Moreover, moisture content of treated fiber has been measured quantitatively using TGA. Finally wavelet analysis has been applied to understand the surface characteristics of water hyacinth fiber and compare its surface roughness value was measured by SEM. Furthermore, entropy of the treated and untreated fibers has also been calculated.

contact angle hydrophobicity moisture plasma treatment wavelet analysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Anwer Md Masroor, A. H. Bhuiyan, IOSR Journal of Applied Physics (IOSRJAP) 16 (2012) 16-22.
[2]  C. C. Gunnarsson, C. M. Petersen, Waste Management 27 (2007) 117-129.
[3]  Ebhin R Masto, Sandeep Kumar, T. K. Rout, Pinaki Sarkar, Joshy George, L. C. Ram, Catena 111 (2013) 64-71.
[4]  A. Malik, Environmental International 33 (2007) 122-138.
[5]  Ying Gao, Xianhua Wang, Jun Wang, Xiangpeng Li, Jianjun Cheng, Haiping Yang, Hanping Chen, Energy 58 (2013) 376-383.
[6]  P. Biller, A. B. Ross, Biofuels 3 (2012) 603-623.
[7]  Y. K. Ong, S. Bhatia, Energy 35 (2010) 111-119.
[8]  J. N. Nigam, J. of Biotechnology 07 (2002) 107-116.
[9]  A. Kuniati, H. Darmokoesoemo, N. N. T. Puspaningsih, J. of Agriculture biotechnology and sustainable development 3 (2011) 182-188.
[10]  D. Mashima, M. Kuniki, K. Sei, S. Soda, M. Ike, M. Fujita, Bioresource Technology 99 (2008) 2495-2500.
[11]  Xia Ao, Jun Cheng, Richen Lin, Lingkan Ding, Junhu Zhou, Kefa Cen, Energy 55 (2013) 631-637.
[12]  S. S. Toor, L. Rosendahl, A. Rudolf, Energy 36 (2011) 2328-2342.
[13]  A, Kruse, J. of Supercritical fluids 47 (2009) 391-399.
[14]  C. Douglas, John Elliott, L Sealock, R. Scott Butner, American chemical society 17 (1988) 179-188.
[15]  R. Oraji, Master of Science Thesis, University of Saskatchewan, Saskatoon, 2008.
[16]  Shishoo Roshan Shishoo. Plasma technologies for textiles. 1st ed. Woodhead Publishing in Textiles. England, Cambridge, 2007.
[17]  Jing Zhang, Paul France, Arseni Radomyselskiy, Saswati Datta, Jiangang Zhao, William Van Ooij, Journal of Applied. Poly. Science 88 (2003) 1473-1481.
[18]  Lei Fu, Zhimin Liu, Yunqi.Liu, Buxing Han, Pingan Hu, Lingchao Cao, Daoben Zhu, Advanced Materials 17 (2005) 217-221.
[19]  Robert M. Dickson, L.Andrew Lyon, Journal of Physical Chem B 104 (2000) 6095-6098.
[20]  Peter K. Stoimenov, Rosalyn L. Klinger, George L. Marchin, Kenneth J. Klabunde, Langmuir 18 (2002) 6679-6686.
[21]  Xue-Guang Shao, Alexander Kai-Man Leung, Foo-Tim Chau, Accounts of Chemical Research 36 (2003) 276-283.
[22]  G. Stephane, A, Mallat, IEEE Transactions on Pattern analysis and Machine Intelligence 11 (1989) 674-693.
[23]  Lin Yuan, Xu Rui Xiao, Li Xue Ping, Xiao Wen Zhou, Surface Science 579 (2005) 37-46.
[24]  Alisher Maksumov, Ruxandra Vidu, Ahmet Palazoglu, Pieter Stroeve, Journal of colloid and interface science 272 (2004) 365-377.
[25]  A. Grossman and J. Morlet, SIAM J.Math 15 (1984) 723-730.
[26]  N. Hari Prakash, Bornali Sarma, S. Gopi, Arun Sarma, Instrumentation Sci.and Tech. 44 (2016) 73-84.
[27]  M. M. Morshed, Monjarul M. Alam, S. M. Daniels, Plasma Chemistry and Plasma Processing 32 (2012) 249-258.
[28]  Gary G. Chinga, P. Johnsen, R. Dougherty, E Berli, Journal of Microscopy 227 (2007) 254-265.
[29]  B. D. Cullity, Elements of X-ray diffraction. Addison-Wesley Publishing Company Inc., Reading, Massachusetts, 1956.
[30]  L. Segal, J. Creely, Conrad CM, Textile Research Journal 29 (1959) 786-794.
[31]  Yu-Qing Zhang, Wei-De Shen, Ru-Li Xiang, Lan-Jian Zhuge, Wei-Jian Gao, Wen-Bao Wang, Journal of Nanoparticle Research 9 (2007) 885-900.
[32]  S. Mohanty, S. K. Nayak, S. K. Verma, S. S. Tripathy, Journal of Reinforced plastics and composites 23 (2004) 2047-2063.
[33]  K. S. Venkatesh, S. R. Krishnamoorthi, N. S. Palani, V. Thirumal, S. P. Jose, F. M. Wang, R. Ilangovan, Indian Journal of Physics 89 (2015) 445-452.
[34]  E. Sinha, S. K. Rout, Bull. Mat. Sci. 32 (2009) 65-76.
[35]  Wafaa M. Raslan, Usama S. Rashed, Hanan El-Sayad, Azza A. El-Halwagy, Material Science and Applications 2 (2011) 1432-1442.
[36]  N. David, Petr Klapetek, Central European Journal of Phys. 10 (2012) 181-188.
[37]  S. Chandrasekaran, J. Check, S. Sundararajan, P. Shrotriya, Sensors and Actuators A 121 (2005) 121-130.