American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: http://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2017, 5(1), 1-5
DOI: 10.12691/ajmse-5-1-1
Open AccessArticle

Rietveld Refinement of the Crystal Structure of Hydroxyapatite Using X-ray Powder Diffraction

A. El Yacoubi1, A. Massit1, S. El Moutaoikel1, A. Rezzouk2 and B. Chafik El Idrissi1,

1Team Materials Surfaces Interfaces, Laboratory Materials and Energitics, Fac of Sciences, University Ibn Tofail, kenitra, Morocco

2LPS, Fac. des Sciences Dhar El Mehraz, BP 1796, Atlas FES, Morocco

Pub. Date: May 27, 2017

Cite this paper:
A. El Yacoubi, A. Massit, S. El Moutaoikel, A. Rezzouk and B. Chafik El Idrissi. Rietveld Refinement of the Crystal Structure of Hydroxyapatite Using X-ray Powder Diffraction. American Journal of Materials Science and Engineering. 2017; 5(1):1-5. doi: 10.12691/ajmse-5-1-1

Abstract

The stoichiometric hydroxyapatite, Ca10(PO4)6(OH)2 is prepared by an aqueous precipitation method at room temperature, the main reactants were Ca(OH)2 and H3PO4 without addition of ammonia solution. The sample was analyzed by Fourier transformed infrared spectroscopy (FTIR) which reveals the presence of a small amount of carbonate due to absorbance of carbon dioxide from the air during synthesis process. The crystal structure was carried out by X-ray powder diffraction data and the Rietveld method using FullPROF software. We confirmed that this material has a hexagonal structure (space group P63/m; Z = 1). Unit-cell parameters with higher precision (a = b = 9.4159(4) Å , c = 6.8819(3) Å, α = β = 90°; and γ = 120°).

Keywords:
hydroxyapatite infrared spectroscopy X-ray powder diffraction Rietveld refinement

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  E. Fujii, M. Ohkubo, K. Tsuru, S. Hayakawa, A. Osaka, K. Kawabata, C. Bonhomme and F. Babonneau, Acta. Biomater; 2, pp. 69-74, 2006.
 
[2]  D.A. Puleo, L.A. Holleran, R.H. Doremus and R. Bizios, J. Biomed. Mater. Res. 25, pp. 711-723, 1991.
 
[3]  R. Garcia and R.H. Doremus, J. Mater. Sci. Mater. Med. 3, pp. 154-156, 1992.
 
[4]  K.J.L.Burg, S. Porter and J.F. Kellam, Biomaterials. 21, pp. 2342359, 2000.
 
[5]  Y.J. Wang, J.D. Chen, K. Wei, S.H. Zhang and X.D. Wang, Mater. Lett. 60, pp. 3227-3231, 2006.
 
[6]  C.S. Ciobanu, S.L. Iconaru, P. Le Coustumer, L.V. Constantin and D. Predoi, Nanoscale. Res. Lett. 7, pp. 324-332, 2012.
 
[7]  G. Krishnamurithy, M. Raman Murali, M. Hamdi, A.A. Abbas, H.B. Raghavendran and T. Kamarul, Ceram. Int. 40, pp. 771-777, 2014.
 
[8]  H. Yoshikawa, N. Tamai, T. Murase and A. Myoui, J. R. Soc. Interface. 6, pp. S341-S348, 2009.
 
[9]  C.S. Ciobanu, F. Massuyeau, L.V. Constantin and D. Predoi, Nanoscale, Res. Lett. 6, pp. 613-620, 2011.
 
[10]  C.S. Ciobanu, C.L. Popa and D. Predoi, J. Nanomater, pp. 1-9, 2014.
 
[11]  C.S. Ciobanu, E. Andronescu and D. Predoi, Dig, J. Nanomater. Bios. 6, pp. 1239-1244, 2011.
 
[12]  D.Predoi and R.A. Vatasescu-Balcan, J. Optoelectron. Adv. M. 10, pp. 152-157, 2008.
 
[13]  Náray-Szabó, St, Zeit. Krist, 75, pp. 387-398, 1930.
 
[14]  Mehmel, M, Zeit. Krist, 75, pp. 323-331, 1930.
 
[15]  H.M. Kim, Current Opinion in Solid State and Materials Science 7, pp. 289-299, 2003.
 
[16]  B. Chafik El Idrissi, K. Yamni, A. EL Yacoubi, A. Massit, IOSR Journal of Applied Chemistry, 2278 5736.Volume 7, Issue 5 Ver. III, pp. 107-112, May-2014.
 
[17]  H.M. Rietveld, “Line profiles of neutron powder diffraction peaks for structure refinement,” Acta Crystallogr. 22, pp. 151-152, 1967.
 
[18]  H.M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, pp. 65-71, 1969.
 
[19]  S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, “Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling,” Mater. Chem. Phys. 93, p. 224, 2005.
 
[20]  S. Bid, S.K. Pradhan, “Preparation and microstructure characterization of ball-milled ZrO2 powder by the Rietveld method: monoclinic to cubicphase transformation without any additive,” J. Appl. Crystallogr. 35, p. 517., 2002.
 
[21]  J. Rodríguez-Carvajal, Physica B 192, p. 55, 1993.
 
[22]  R.A. Young, D.B. Wiles, “Application of the Rietveld methods for structure refinement with powder diffraction data,” Adv X-ray Analysis 24, pp. 1-23, 1980.
 
[23]  Gibson IR, Best SM, Bonfield W, “Chemical characterization of silicon-substituted hydroxyapatite,” J Biomed Mater Res, pp. 422-8, 44-1999.
 
[24]  Kim SR, Riu DH, Lee YJ, Kim YH, “Synthesis and characterization of silicon substituted hydroxyapatite,” Key Eng Mater, pp. 218-220: 85-8, 2002.
 
[25]  Rodriguez-Carvajal, “J. FULLPROF-A program for Rietveld, profile matching and integrated intensities refinement of X-ray and/or neutron data,” Laboratoire Leon Brillouin: CEA-Saclay, France, 2000.
 
[26]  A. Boultif and D. Louër, J. Appl. Crystal, Vol. 24, pp. 987-993, 1991.
 
[27]  Daniel Arcos , Juan Rodríguez-Carvajal, Maria Vallet-Regí, Solid State Sciences 6, pp. 987-994, 2004.
 
[28]  Th. Leventouri, C.E. Bunaciu, V. Perdikatsis, Biomaterials 24, pp. 4205-4211, 2003.
 
[29]  P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Crystallogr. 20, p. 79, 1987.