American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2013, 1(3), 46-49
DOI: 10.12691/ajmse-1-3-3
Open AccessArticle

Structural and Optical Investigations of Amorphous Se75-xTe25Sbx Thin Films

D. K. Dwivedi1, , H. P. Pathak1, R. K. Shukla2 and A. Kumar2

1Department of Physics, Amorphous Semiconductor Research Lab, M.M.M. Engineering College, Gorakhpur, India

2Department of Physics, H.B.T.I., Kanpur, India

Pub. Date: September 04, 2013

Cite this paper:
D. K. Dwivedi, H. P. Pathak, R. K. Shukla and A. Kumar. Structural and Optical Investigations of Amorphous Se75-xTe25Sbx Thin Films. American Journal of Materials Science and Engineering. 2013; 1(3):46-49. doi: 10.12691/ajmse-1-3-3


Thin films of Se75-xTe25Sbx (x = 0, 3, 6, & 9) glassy alloys have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis by absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The optical constants (absorption coefficient (α), extinction coefficient (k)) and optical band gap (Eg) have been studied. It has been found that extinction coefficient (k) decreases with increase in wavelength (λ). The absorption coefficient (α) is found to increase with incident photon energy. Optical band gap (Eg) has also been calculated and found to decrease with Sb content in Se75-xTe25Sbx (x = 0, 3, 6, & 9) glassy system. The decrease of optical band gap (Eg) with Sb concentration has been explained on the basis of Mott and Davis model.

chalcogenide glasses amorphous semiconductors thin films optical properties optical band gap

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 5


[1]  Seddon, A.B., “Chalcogenide glasses: a review of their preparation, properties and applications”, J. of Non-crys Solids, 184, 44-50, 1995.
[2]  Kakiuchida, Hiroshi, Sekiya, Edson. H., Shimodaira, Noriaki, Saito, Kazuya, Ikushima and Akira. J., “Refractive index and density changes in silica glass by halogen doping”, J. of Non-crys Solids, 353, 568-572, 2007.
[3]  Lucovsky, G., Baker, D.A., Paesler, M.A. and Phillips, J.C., “Spectroscopic and electrical detection of intermediate phases and chemical bonding self-organizations in (i) dielectric films for semiconductor devices, and (ii) chalcogenide alloys for optical memory devices”, J. of Non-crys Solid, 353, 1713-1722, 2007.
[4]  Popescu, M., Sava, F., Lőrinczi, A., Socol, G., Mihăilescu, I.N., Tomescu, A. and Simion, C., “Structure, properties and gas sensing effect of SnSe2 films prepared by pulsed laser deposition method”, J. of Non-crys Solids, 353, 1865-1869, 2007.
[5]  Sun, Jingjing, Akdogan, E. Koray, Klein, Lisa C. and Safari, Ahmad, “Characterization and optical properties of sol–gel processed PMMA/SiO2 hybrid monoliths”, J. of Non- crys, Solids, 353,2807-2812, 2007.
[6]  Voynarovych, I., Takach, V., Cheresnya, V., Pynzenik, V., Makaur, I. and Chernovich, S., Phys and Chem. of Solid State, 8 (4), 722, 2007.
[7]  Singh, Abhay Kumar, Singh, Kedar and Saxena, N. S. "Effect of annealing on structures and effective thermal conductivity of Se90In10 chalcogenide glass”, J. of Ovonic. Res., 4,107-111,2008.
[8]  Dwivedi, D. K., Dayashankar and Dubey, M., “Effect of annealing on the structural and electrical properties of CdTe/ZnTe heterojunction thin”, Chalcogenide Letters, 6( 2), 71-76, 2009.
[9]  Prabhakar, S., Suryanarayanan, N., Rajshekhar, K. and Srikanth, S., “Lead selenide thin films from vacuum evaporation method- structural and optical properties”, Chalcogenide Lett., 6(5), 203-211, 2009.
[10]  Tanaka, K., “Structural phase transitions in Chalcogenide glasses”, Phys. Rev. B, 39, 1270-1279, 1989.
[11]  Shimizu, A., “Data Detection using Pattern Recognition for Multi-level Optical Recording”, Technical Digest of ISOM 2001, 300-301, 2001.
[12]  Akiyama, T., Uno, M., Kituara, H., Narumi, K., Nishiuchi, K. and Amada, N., “Rewritable Dual-Layer Phase-Change Optical Disk Utilizing a Blue-Violet Laser”, Jpn J. appl. Phys., 40, 1598-1603, 2001.
[13]  Ohta, T., “Phase-change optical memory promotes the DVD optical disk”, J. Optoelectron. Adv. Mater., 3, 609-626, 2001.
[14]  Harbold, J.M., Hilday, F.O., Wise, F.W. and Itkain, B.G., “Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching”, IEEE Photonics Technology Letters, 14(6), 822-824, 2002.
[15]  Onozuka, A. and Oda, O., “Electrophotographic properties of SeTeSb Halogen alloy”, J. Non-Cryst. Solids, 103, 289-294, 1988.
[16]  Srivastava, S.K., Dwivedi, P.K. and Kumar, A., “Steady state and transient photoconductivity in amorphous thin films of Se100-xInx”, Physica B, 183(4), 409-414, 1993.
[17]  Shimakawa, K., “Residual photocurrent decay in amorphous Chalcogenides”, J Non-Cryst Solids, 77-78, Part 2, 1253-1256, 1985.
[18]  Shim, Jae Yeob, Park, Sang Wook and Baik, Hong Koo, “Silicide formation in cobalt/amorphous silicon, amorphous Co_Si and bias-induced Co_Si films”, Thin Solid Films, 292 (1-2), 31-39, 1997.
[19]  Saiter, J.M, Ledru, J., Hamou, A. and Saffarini, G., “Crystallization of AsxSe1−x from the glassy state (0.005<x<0.03)”, Physica B: Condensed Matter, 245(3), 256-262, 1998.
[20]  Khan, Zishan H., Zulfequar, M., Ilyas, M., Husain, M.and Begum, Kh. Selima, “Electrical and thermal properties of a-(Se70Te30)100−x(Se98Bi2)x (0 x 20) alloys”, Current Applied Physics, 2(2),167-174, 2002.
[21]  Ahmed, A., Khan, S.A., Khan, Z.H., Julfiquar, M., Sinha, Kirti and Husain, M., “Differential Scanning Calorimetric study of Se80 Te20-x Cux Chalcogenide glasses”, Physica B 382, 92-97,2006.
[22]  León,M., Díaz, R., and Rueda,F., “Composition effects in ‘‘flash’’ evaporated CuIn(SexTe1−x)2 films”, J. Vac. Sci. Technol. A, 12, 3082, 1994.
[23]  Mehta, N., “Applications of Chalcogenide glasses in electronics and optoelectronics: A review”, J. Scientific and Industrial Research,65, 777-786, 2006.
[24]  Roy, R.and Choudhary, V.S., J.Opto-Electron. Adv. Mater., 8, 1352, 2006.
[25]  Kumar, B. Rajesh and Rao, T. Subba, “Studies on structural and optical properties of vacuum evaporates In2Te3 thin films”, Chalcogenide Lett., 8, 83-92, 2011.
[26]  Sivamalar, S., Shanthi, J. and Kalugasalam, Pon, “Comparison of optical properties of PbPc and CuPc thin films”, Chalcogenide Lett., 9, 275-297, 2012.
[27]  Ghamdi, A.A., “Optical band gap and optical constants in amorphous Se96−x Te4Agx thin films”, Vacuum, 80(5), 400-405, 2006.
[28]  Ali, Nisar, Ali, Zulfiqar, Akram, Rizwan, Aslam,S.M., Jabeen, Musarrat, Chaudhry, M. Nawaz, Iqbal, M.A. and Ahmad, N., “Study of Sb 28.47Sn11.22S60.32 compound as thin film for photovoltaic applications”, Chalcogenide Lett., 9,329-335, 2012.
[29]  Zakery, A. and Elliott, S.R., “Optical properties and applications of chalcogenide glasses: a review”, J.Non-Crys.Solids, 330, 1-12, 2003.
[30]  Shukla, S. and Kumar S., “Optical characterization of a-Se85-xTe15Znx thin films”, J. Pramana Physics, 78,309-318, 2012.
[31]  Pradeep, P., Saxena, N.S. and Kumar, A., “Crystallization and specific heat studies of Se100 –x Sbx (x = 0, 2 and 4) glass”, J. Phys Chem.Solids, 58,385-389, 1996.
[32]  Abkowitz, M., “Relaxation induced changes in electrical behavior of glassy chalcogenide semiconductors”, Polymer Eng.Sci., 24(14), 1149-1154, 1984.
[33]  Tauc, J., Amorphous and Liquid Semiconductor, Plenum Press, New York, 1979, 159.
[34]  Urbach, F., Phys Rev, 92, 1324, 1953.
[35]  Mott, N.F., Davis, E.A., Electronics Processes in Non – Crys Mat., Clarendon, Oxford, 1979, 428.
[36]  Kasrner, M., Adler, D. and Fritzsche, H., Physics Rev.Lett., 37, 1504, 1976.