American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2016, 4(1), 13-19
DOI: 10.12691/ajmse-4-1-3
Open AccessArticle

Use of Vegetable Fibers as Reinforcement in the Structure of Compressed Ground Bricks: Influence of Sawdust on the Rheological Properties of Compressed Clay Brick

S. Ouattara1, , M. O. Boffoue1, A. A. Assande1, K. C. Kouadio1, C. H. Kouakou1, E. Emeruwa1 and Pasres2

1Laboratory of Geomaterials and building Technology (LGTB), DEPARTMENT of Earth sciences and Mining Resources, Felix Houphouet Boigny University, Abidjan, 22 po box 582 Abidjan 22, Ivory Coast

2Strategic Support Program to Scientific research (financing agency of the study)

Pub. Date: August 03, 2016

Cite this paper:
S. Ouattara, M. O. Boffoue, A. A. Assande, K. C. Kouadio, C. H. Kouakou, E. Emeruwa and Pasres. Use of Vegetable Fibers as Reinforcement in the Structure of Compressed Ground Bricks: Influence of Sawdust on the Rheological Properties of Compressed Clay Brick. American Journal of Materials Science and Engineering. 2016; 4(1):13-19. doi: 10.12691/ajmse-4-1-3


The present study aims at understanding the rheological behavior of Compressed Ground Bricks (CGB). It thus uses as raw materials the clay and the sawdust which are an industrial waste with the multiple consequences on the environment. The composites elaborate clay-sawdust of wood are bricks intended to be used like fill material of the walls. Their mechanical properties were studied in order to place at the disposal of the users, of competitive materials; but a particular stress was laid on their behavior at the rupture. Thus, the study shows that the CGB containing clay only have flexural strength and compressive strength respectively of 1.3 MPa and 2.6 MPA. When one adds the sawdust to it, these resistances grow to reach optimal values, before decreasing. For the flexural strength, optimal resistance is of 1.4 MPa, for a content of sawdust of 20%. For the compressive strength, the optimum is reached to sawdust 15% with a resistance of 4.4 MPa. The study of the relations stress-strain shows that the curve of the CGB without sawdust has only one pace rectilinear before the rupture (elastic range); these bricks thus have a fragile behavior. The addition of the sawdust to clay confers on the CGB a quasi ductile behavior characterized by curves which present initially a rectilinear part (elastic range), followed by a curvilinear part (plastic range). One can also note that the addition of the sawdust cause a drop in the dry density of bricks.

compressed ground bricks clay sawdust compressive strength flexural strength stress-strain

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 10


[1]  Kouakou C. H. (2005). Valorisation des argiles de Côte d’Ivoire : étude de la stabilisation à froid de l’argile de Dabou avec un liant hydraulique (le ciment Portland). Thèse de Doctorat des Sciences de la Terre, option Géomatériaux, Université de Cocody, Abidjan 196 p.
[2]  Kouadio K. C. (2010). Élaboration et caractérisation de blocs d’argile stabilisée au ciment (Cimarg) : influence de l’apport de dégraissant sur les caractéristiques physiques et mécaniques des blocs. Thèse de Doctorat des Sciences de la Terre option Géomatériaux, Université de Cocody, Abidjan, 151 p.
[3]  Ouattara S. (2013). Recherche de briques légères : conception et caractérisation de briques crues à base d’argile et de sciure de bois, stabilisées au ciment Portland. Thèse de Doctorat unique des Sciences de la Terre, option Géomatériaux, Université Félix Houphouët Boigny, Abidjan 150 p.
[4]  Rossi P., Acker A. and Maller Y. (1987). Effect of steel fibers at two different stages: the material and the structure. Material and Structure, vol. 20, pp 436-439.
[5]  Dardare J. (1975). Contribution à l’étude du comportement mécanique des bétons renforcés de fibres de polypropylène. Fiber reinforced cement and concrete, RILEM, symposium 1975, Edited by A. NEVILLE, Lancaster, Construction Press, pp 227-235.
[6]  Andonian R., Mai Y. W. and Cotterll B. (1979). Strength and fracture properties of cellulose fiber reinforced cement composites. Journal of Cement Composites, vol. 1, n° 3, pp. 151-158.
[7]  Gopalaratman V. S. and Shah S. P (1985). “Softening Response of plain concrete in Direct Tension.” ACI Journal, May-June 1985, Vol. 82, N° 3, pp 310-323.
[8]  Coutts R. S. P. and Ni Y. (1995). Autoclaved bamboo pulped fibre reinforced cement. Cement and Concrete Composites, vol. 17, pp 99-106.
[9]  Blankenhorn P. R., Silsbee M. R., Blankenhorn B. D. and Dicola M. (1999). Temperature and moisture effect on selected properties of wood fiber-cement composites. Cement and Concrete Research, vol. 29, pp 737-741.
[10]  Khenfer M. and Morlier P. (2000). Caractérisation et microstructure de ciments renforcés de fibres de cellulose. Bulletin des Laboratoires des Ponts et Chaussées, vol. 224, n° 4236, pp 49-58.
[11]  Ledhem A., Al-Rim K. et Queneudec M. (1996). Étude des paramètres de fabrication d’un composite argile-ciment-bois. Materials and Structures, vol. 29, pp 514-518.
[12]  Savastano J. H., Warden P. G. et Coutts R. S. P. (2000). Brazilian waste fibres as reinforcement for cement-based composites. Cement, Concrete Composites Journal, vol. 22, pp 379-384.
[13]  Agarwall L. K., (1995). Bagasse-reinforced cement composites. Cement and Concrete Composites, vol. 17, pp. 107-112.
[14]  Benmalek M. L., Houari H., Bali A. et Queneudec M. (2000). Comportement d’un composite fine minérale - ciment - bois élaboré à l’aide de déchets industriels solides, Sciences & Technologie n°13 juin (2000), pp 65-72.
[15]  Bederina M. (2007). Caractérisation mécanique et physique des bétons de sable à base de déchets de bois. Thèse de Doctorat, École Nationale polytechnique, Alger, Algérie, 166 p.