American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2016, 4(1), 1-6
DOI: 10.12691/ajmse-4-1-1
Open AccessArticle

Improved Optical Properties of Tin Antimony Sulphide Thin Films for Photovoltaics

M. A. Khan1, , Azhar Ahmed1, N. Ali2, Tariq Iqbal1, Ayaz Arif Khan1, Mahboob Ullah1 and Muhammad Shafique1

1Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

2National Center of Physics, Quaid-i-Azam University Campus Islamabad, Pakistan

Pub. Date: March 24, 2016

Cite this paper:
M. A. Khan, Azhar Ahmed, N. Ali, Tariq Iqbal, Ayaz Arif Khan, Mahboob Ullah and Muhammad Shafique. Improved Optical Properties of Tin Antimony Sulphide Thin Films for Photovoltaics. American Journal of Materials Science and Engineering. 2016; 4(1):1-6. doi: 10.12691/ajmse-4-1-1


Tin antimony sulphide thin films have been synthesized as an absorber layer for solar cells. These films are deposited by vacuum thermal evaporation on glass substrate at a pressure of 10-5 torr. The films are then annealed at different temperatures in argon atmosphere. XRD analysis reveals that both as deposited and annealed films are found to be in polycrystalline phase. The crystallinity of the films is significantly enhanced with increasing annealing temperatures. The quantum efficiency is higher in the visible and near infrared region for the annealed films whereas the quantum efficiency of as deposited film is comparatively lower. The transmittance of the annealed films is found to be decreasing with increasing temperatures. The thickness and band gap of the films are measured by ellipsometric data. The absorption coefficient of the films is significantly higher (~105cm-1), which is very important factor regarding solar conversion efficiency. Hot point probe measurements show that the films possess n-type electrical conductivity.

tin antimony sulphide solar cell quantum efficiency band gap absorption coefficient

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 8


[1]  M. Adachi, J. Jiu, S. Isoda, Curr. Nanosci. 3 (2007) 285.
[2]  N. K. Reddy, K. T. R. Reddy, Physica B: Condens. Matter., 368 (2005) 25.
[3]  S. Cheng, G. Conibeer, Thin Solid Films, 520 (2011) 837.
[4]  P. Nwofe, K. Reddy, J. Tan, I. Forbes, R. Miles, Phys. Procedia, (2012) 25150-25157.
[5]  H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dachraoui, Comptes Rendus Chimie. 14 (2011) 471.
[6]  H. Dittrich, A. Stadler, D. Topa, H. J. Schimper, A. Basch, Phys. Status Solidi A, 206 (2009) 1034.
[7]  A. Gassoumi, M. Kanzari, J. Optoelectron. Adv. Mater. 11 (2009) 414.
[8]  Matthieu Y. Versavel, Joel A. Haber, Thin Solid Films 515 (2007) 5767.
[9]  H. Dittrich, A. Bieniok, U. Brendel, M. Grodzicki, D. Topa, Thin Solid Films 515 (2007) 5745.
[10]  M. Y. Chen, K. A. Rubin, US Patent No. (1992) 5242784.
[11]  K. Hoang, S.D. Mahanti, J. Androulakis, M.G. Kanatzidis, Mater. Res. Soc. Symp. Proc. 886 (2006).
[12]  T. B. Massalski, H. Okamoto, Binary alloy phase diagrams, ASM International (1990).
[13]  A. Gassoumi, M. Kanzari, Chalcogenide Lett., 6 (2009) 163.
[14]  P. P. K. Smith, J. B. Parise, Struct. Sci., 41 (1985) 84.
[15]  S.F. Bartram, Handbook of X-Rays, edited by E.F. Kaelebe, p.17, McGraw-Hill, New York, (1967).
[16]  Abid, M. Eman, M. Inaam, Abdul Majeed, Kadhim A. Aadim., International Journal of Innovative Research in Science, Engineering and Technology, (2013) 2.
[17]  A. Gassoumi, M. Kanzari, B. Rezig .Eur. Phys: J. Appl. Phys. 41 (2008) 91.
[18]  A. Rabhi, M. Kanzari, B. Rezig, Mater. Lett., 62 (2008) 3576.
[19]  P. Agbo, Adv. Appl. Sci. Res., 2 (2011) 399.
[20]  S. Ezugwu, F. Ezema, P. Asogwa, Chalcogenide Lett., 7 (2010) 341.
[21]  P. Agbo, Adv. Appl. Sci. Res., 3 (2012) 599.
[22]  H. B. Lee, Y. M. Yoo, Y. H. Han, Scripta Mater., 55 (2006) 1127.
[23]  H. Unlu. Solid State Electronics 35 (1992) 1343.
[24]  J. D. Plummer, M. D. Deal, P. B. Griffin, Silicon VLSI Technology, Prentice Hall, (2000).