American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2013, 1(3), 34-39
DOI: 10.12691/ajmse-1-3-1
Open AccessArticle

Corrosion Characteristics of Mild Steel under Different Atmospheric Conditions by Vapour Phase Corrosion Inhibitors

Harish Kumar1, and Vikas Yadav1

1Material Science & Electrochemistry Lab, Department of Chemistry, Ch. Devi Lal University, Sirsa, Haryana, India

Pub. Date: May 08, 2013

Cite this paper:
Harish Kumar and Vikas Yadav. Corrosion Characteristics of Mild Steel under Different Atmospheric Conditions by Vapour Phase Corrosion Inhibitors. American Journal of Materials Science and Engineering. 2013; 1(3):34-39. doi: 10.12691/ajmse-1-3-1


Mild steel is used as main raw material in fabrication of equipment, chief material of construction and fabrication of weapons. During the storage and transportation conditions, it comes in contact with aggressive environment which leads to decrease in mechanical strength. Four different vapor phase corrosion inhibitors (VPCIs) i.e. N-N-Dimethyl aniline (DMA), Morpholine, Cyclohexyl amine and Hexamethylene imine were tested for mild steel under different corrosive atmospheric conditions at 40°C by Weight Loss, Eschke test, Salt Spray and SEM techniques. All the four VPCIs show very high corrosion inhibition efficiency i.e. 96-98%. The results obtained from corrosion experiments were supported by surface study carried out by SEM technique.

mild steel atmospheric corrosion vapor phase corrosion inhibitors Eschke Test

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 4


[1]  Free, M. L., Klang, W., Ryu, D. Y. “Prediction of Corrosion Inhibition using. Surfactants,” Corrosion, 60, 837-844, 2004.
[2]  Rozenfeld, I. L., Corrosion Inhibition, McGraw Hill Inc, New York, 1982.
[3]  Kuznestor, Y. L., Organic inhibitors of Corrosion of metals. Plenum Press, New York, 1996.
[4]  Jones, D. A., Principles and preventions of corrosion. 2nd ed., Prentice Hall, Upper Saddle. River, N. J., 1996.
[5]  Bregmann, J. L., Corrosion Inhibition. Macmillan Co., New York, 1963.
[6]  Kumar, H. and Sunita, “Synergistic effect of CTMAC, CTMAB & CPC Surfactants. towards Corrosion of Carbon Steel” Intern. J. of Chemical Sci. & Tech., 2(2), 2011, 212-217.
[7]  Kumar, H. and Sunita, “ADS, ALS, AHDS & ADDBS Surfactants as Corrosion Inhibitors. for Carbon Steel in acidic Solution” Res. J. of Chem. Sci., 3(2), 2012
[8]  Rosenfeld, I. L., Proc. of the First International Congress on Metallic Corrosion, =Butterworth, London, 1962, 243.
[9]  Stern, A. C., Air Pollution. Academic Press, New York, 1968, 149.
[10]  Kumar, H. and Saini, V. “Corrosion characteristics of vapour phase inhibitors for mild steel under different atmospheric condition” J. Corros. Sci. & Engg., 14 Preprint 5, 2013.
[11]  Subrumanian, A., Natsen, M., Murlitharan, V. S., Balakrishan, K. and Vasudevan, T., “An overview: vapor phase corrosion inhibitors,” Corrosion, 56, 2000, 144-155.
[12]  Sastri, V. C., Corrosion Inhibitors Principles and Applications. John Wiley & Sons, New York, 1998.
[13]  Rajgopalan, K. S. and Ramaseshan, G. J., Sci. Ind. Res., 19A, 1960, 275-280.
[14]  Subrumanian, A., Gopalakrishan, R., Bhupati, C. S., Balakrishan, K., Vasudevan, T. Natesan, M. and Rengaswamy, N. S., “Morpholine and its derivatives as Vapor Phase Corrosion Inhibitors for Mild Steel,” Bull. Electrochem, 14, 1998, 289-294.
[15]  Saurbier, K., Mandrof, V., Hchultze, G. W., Geke, J., Penninger, J. and Robmeler, H., Corros. Sci, 33, 1992, 1351-1359.
[16]  Vuarinew, E. K., Ngobeni, P., Van der Klashorst, G. H., Skinner, W. De and Ernst, W. S., “Derivatives of Cyclohexylamine and Morpholine as Volatile Corrosion Inhibitors,” Br. Corros. J., 29, 1994, 120-126.
[17]  Sekine, I., Sambongih, M., Hogiuda, H., Oshibe, T., Yuasa, M., Imohama, T., =Shibata, Y. and Wake, T., J. Electrochem. Soc., 139, 1992, 167.
[18]  Muralitharan, S., Pitchumani, S., Ravicahneran, S. and Iyur, S. V. K., “Polyamino-benzoquinone polymers- A new class of corrosion inhibitors for mild Steel,” J. Electrochem. Soc., 142(1), 1995, 1478-1483.
[19]  Zhang, D. Q. and Gao, L. X., “Oligomeric Volatile Corrosion Inhibitors for Shipyard. Installations,” Mater. Perform 42, 2003, 40-47.
[20]  Quraishi, M. A. and Jamal, D., “Synthesis and evaluation of some organic vapor phase. corrosion Inhibitors,” Ind. J. Chem. Tech. 11, 2004, 459-464.
[21]  Quraishi, M. A. and Jamal. D., “Development and testing of all organic volatile corrosion. inhibitors,” Corrosion, 58, 2002, 387-391.
[22]  Tuken Yazici, T. and Erbil, B., Progress in organic coating, 50, 2004, 115.
[23]  Starostina, M., Smorodin, A., Galor, L., Material Perform. 38, 2000, 52.
[24]  Rajendran, S., Apparao, B. V., Palaniswamy, N., “Corrosion and its Control”, Proc. of International Conference on Corrosion, 1997, Mumbai.
[25]  Quraishi, M. A., Bhardawaj, V., Jamal, D., “Prevention of Metallic Corrosion by Some Salts of Benzoic Hydrazide under Vapor Phase Conditions,” Ind. J. Chem. Tech., 12, 2005, 93-97.
[26]  Persiantsava, V. P., “Chemistry Review in Corrosion, Soviet Scientific Reviews of Mascow,” OSSR, 8(2), 1987, 64.
[27]  Subrumanian, A., Natesan, M., Balakrishan, K., Vasudevan, T., Bull. Electrochem, 15, 1999, 54.
[28]  Dogra, S. K., and Dogra, S., Physical Chemistry through Problems, Wiley Eastern Limited, New Delhi, 1986, 231.
[29]  Narayan, R., An Introduction to Metallic Corrosion and its Prevention, 1st ed, Oxford and IBH, 1983.
[30]  Furman, A., and Chandler, C., “Test methods for Vapor Corrosion Inhibitors,” Proc. 9th Eur. =Sym. Corros. Inhib., Ann. Univ., 11, 2000, 465.
[31]  Baligim, S. A., Compets Rendus de 2eme Europeen Symposium Sur Les Inhibiteurs de Corrosion, Ann. Univ. Ferrara, N.S., 1966.
[32]  Rosenfeld, I. L., Persiantseva, V. P., Polteva, M. N., “Inhibitors” National Association of Corrosion Engineers, 1972, 606-609.