American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2014, 2(4), 62-67
DOI: 10.12691/ajmse-2-4-3
Open AccessReview Article

Synthesis of Chitosan-graft-Polyaniline-Based Composites

S.R. Khairkar1, and A.R. Raut1

1Department of Chemistry, Govt. Institute of Science & Humanities Amravati, India

Pub. Date: October 17, 2014

Cite this paper:
S.R. Khairkar and A.R. Raut. Synthesis of Chitosan-graft-Polyaniline-Based Composites. American Journal of Materials Science and Engineering. 2014; 2(4):62-67. doi: 10.12691/ajmse-2-4-3


Chitosan was grafted with polyaniline through oxidative-radical copolymerization using ammonium persulfate in acidic medium. The grafting conditions were extensively studied by varying grafting parameters. All the findings have been discussed and proposed a plausible mechanism for the graft copolymerization. The representative chitosan-graft-polyaniline (Ch-g-PANI) was characterized using UV-VIS, FTIR, DSC, XRD and Scanning electron microscopy taking chitosan as reference. Ch-g-PANI exhibited electrical conductivity, which increases with the extent of grafting onto chitosan backbone. The application of conducting biomaterial such as Ch-g- PANI in the electronic devices especially for the fabrication of sensor devices would be attractive not only in terms of product cost and environmental safety but also from a materials science point of view.

Biopolymers Biocomposites material testing thermal properties industrial applications

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 8


[1]  Sengupta P. P. S., Barik S., Adhikari B.: Materials and Manufacturing Processes, 21, 263-270 (2006).
[2]  Tan C. K., Blackwood D. J. B: Chemical, 71, 184-191 (2000).
[3]  Gosh M., Barman A., Meikap A. K., De S. K., Chatterjee S.Physics Letters: A, 260, 138-148 (1999).
[4]  Karami H., Mousavi M. F., Shamsipur M. Journal of Power Sources, 117, 255-259 (2003).
[5]  Prokes J., Stejskal J Polymer Degradation and Stability, 86, 187-195 (2004).
[6]  Kahol P. K., Kumar S. K. K., Geetha S., Trivedi D. C. Synthetic Metals, 139, 191-200 (2003).
[7]  Kang Y., Kim S. K., Lee C.: Doping of polyaniline by thermal acid-base exchange reaction. Materials Science and Engineering: C, 24, 39-41 (2004).
[8]  Adhikari B., Majumdar S.: Polymers in sensor applications. Progress in Polymer Science, 29, 699-766 (2004).
[9]  Tiwari A.: Gum arabic-graft-polyaniline: Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 44, 735-745 (2007).
[10]  P. Marcasuzaa, S. Reynaud, F. Ehrenfeld, A. Khoukh, and J. Desbrieres, Biomacromolecules 2010, 11, 1684-1691。
[11]  Lu X., Tan C. Y., Xu J., He C. Synthetic Metals, 138, 429-440 (2003).
[12]  Kim S. J., Shin S. R., Spinks G. M., Kim Y., Kim S. I.:. Journal of Applied Polymer Science, 96, 867-873 (2005).
[13]  Takahashi K., Nakamura K., Yamaguchi T., Komura T., Ito S., Aizawa R., Murata K.: Synthetic Metals, 128, 27-33 (2002).
[14]  Shin S. R., Park S. J., Yoon S. G., Spinks G. M., Kim S. I., Kim Synthetic Metals, 154, 213-216 (2005).
[15]  Kim S. J., Shin S. R., Spinks G. M., Kim Y., Kim S. I.:. Journal of Applied Polymer Science, 96, 867-873 (2005).
[16]  Peniche C., Argüelles-Monal W., Davidenko N., Sastre R., Gallardo A., Roman S. J.: Biomaterials, 20, 1869-1878 (1999).
[17]  Tiwari A., Mishra A. P., Dhakate S. R., Khan R., Shukla S. K ATER LETT 01/2007; 61(23):4587-4590.