American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: http://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2013, 1(2), 24-28
DOI: 10.12691/ajmse-1-2-2
Open AccessArticle

Superconductivity in Amorphous and Fully Crystallized Ni-Fe-Zr Metallic Glasses

F. Hamed1,

1Department of physics, Faculty of Science, United Arab Emirates University, Al-Ain, UAE

Pub. Date: May 05, 2013

Cite this paper:
F. Hamed. Superconductivity in Amorphous and Fully Crystallized Ni-Fe-Zr Metallic Glasses. American Journal of Materials Science and Engineering. 2013; 1(2):24-28. doi: 10.12691/ajmse-1-2-2

Abstract

Nano crystallization of Ni0.5Fe0.5Zr3 metallic glasses was achieved by isothermal annealing over the temperature range 673-1173K. The crystallization precedes with the formation of metastable fcc (FeZr2+NiZr2) + stable bct (FeZr2+NiZr2) to stable bct (FeZr2+NiZr2). The resistivity (ρ) of the amorphous and fully crystallized states of Ni0.5Fe0.5Zr3 metallic glasses was investigated over the temperature range 2-300k. The temperature dependence of the resistivity (ρ(T)) for the amorphous state is well described by the Mizutani's equation as group 4 metallic glasses with the Fermi level in the d band; while ρ(T) for the fully crystallized states show a negative deviation from linearity. The amorphous and crystalline states have displayed superconductive transitions at low temperatures. Enhancement in the superconducting transition temperature (Tc) in comparison to the amorphous state was observed in the fully crystallized states.

Keywords:
metallic glasses crystallization nano crystallization electrical transport

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Altounian , Z., and J. O. Strom-Olsen, J. O., “Superconductivity and spin fluctuations in M-Zr metallic glasses (M=Cu, Ni, Co, and Fe)” Phys. Rev. B 27. 4149-4156. 1983.
 
[2]  Batalla, E., Altounian, Z., and J. O. Strom-Olsen, J. O., “Magnetism and electron-mass enhancement in zirconium-rich Fe-Zr and Co-Zr metallic glasses” Phys. Rev. B 31. 577-580. 1985.
 
[3]  Mizutani, U., “Electronic structure of metallic glasses” Prog. Mater. Sci. 28. 97-228. 1983.
 
[4]  Mizutani, U., “Systematic studies of electron transport properties of metallic glasses,” in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, North-Holland, 977-980.
 
[5]  Mizutani, U., “Electron transport properties of non-magnetic metallic glasses ” Mater. Sci. Eng. 99. 165-173. 1988.
 
[6]  Mizutani, U., Tanaka, M., and Sato, H., “Studies of negative TCR and electronic structure of nonmagnetic metallic glasses based on Y and La” J. Phys. F: Met. Phys. 17. 131-142. 1987.
 
[7]  Altounian, Z., Dantu, S. V., and Dikeakos, M., “Effects of spin fluctuations on the resistivity of metallic glasses” Phys. Rev. B 49. 8621-8626. 1994.
 
[8]  Hamed, F., Razavi, F. S., Bose, S. K., and Startseva, T., “Spin fluctuations in metallic glasses Zr75(NixFe1-x)25 at ambient and higher pressures ” Phys. Rev. B 52 9674-9678. 1995.
 
[9]  Sabouri-Ghomi, M., and Altounian, Z., “Enhancement of superconductivity in relaxed Fe-Zr metallic glasses” J. Non-cryst. Solids 205-207. 962-965. 1996.
 
[10]  Daams, J. M., Mitrovic, B., and Carbotte, J. P., “Simulation of the Effects of Paramagnons on a Superconductor by a Simple Rescaling” Phys. Rev. Lett. 46. 65- 68. 1981.
 
[11]  Kokanović, I., Leontić, B., Lukatela, J., and Tonejć, A., “The effect of thermal-relaxation on the short-range order in Zr80Co20 metallic glass” Mater. Sci. Eng. A 375-377. 688-692. 2004.
 
[12]  Kokanović, I., “Effect of disorder on the electrical resistivity in the partially crystalline Zr76Ni24 metallic glasses” J. alloys and compd. 421. 12-18. 2006.
 
[13]  Mattias, B. T., Geballe, T. H., and Compton, V. B., “superconductivity ” Rev. Mod. Phys. 35 1-22. 1963.
 
[14]  Havinga, E. E., Damsna, H., and Kanis, J. M., “Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results” J. Less-common Met. 27 (2). 169-186. 1972.
 
[15]  McCarthy, S. L., “The superconductivity and magnetic susceptibility of some zirconium-transition-metal compounds; evidence for an anticorrelation” J. Low Temp. Phys. 4 (5). 489-501. 1971.
 
[16]  Salinke, H., G., Das, G. P., Raj, P., Sahni, V. C., and Dhar, S. K., “Band filling and superconductivity in Zr2M compounds” Physica C 226. 385-390. 1994.
 
[17]  Nava, F., Bisi, O., and Tu, K. N., “Electrical transport properties of V3Si, V5Si3, and VSi2 thin films” Phys. Rev. B 34. 6143-6150. 1986. and references therein.
 
[18]  Kanemaki, S., Takehira, O., Fukamichi, K., and Mizutani, U., “Low-temperature specific heats and magnetic properties of Co100-xZrx metallic glasses over a wide concentration range x=10-80” J. Phys. F: Condens. Matter 1. 5903-5913. 1989.
 
[19]  Eilenberger, G., and Ambegaokar, V., “Bulk (Hc2) and Surface (Hc3) Nucleation Fields of Strong-Coupling Superconducting Alloys” Phys. Rev. 158. 332-339. 1967.
 
[20]  Rainer, D., and Bergmann, G., “Temperature dependence of Hc2 and к1 in strong coupling superconductors” J. Low Temp. Phys. 14 (5-6). 501-519. 1974.
 
[21]  Kes, P. H., and C. C. Tsuei, C. C., “Two-dimensional collective flux pinning, defects, and structural relaxation in amorphous superconducting films” Phys. Rev. B 28. 5126-5139. 1983.
 
[22]  Amamou, A., Kuentzler, F., Dossmann, Y., Forey, P., J. L. Glimois, J. L., and Feron, J. L., “Electronic structure and electron-phonon coupling in the Ni-Zr system” J. Phys. F: Met. phys. 12. 2509-2522. 1982.
 
[23]  Liu, X. D., Liu, X. B., and Altounian, Z., “Structural evolution of Fe33Zr67 and Fe90Zr10 metallic glasses” J. Non-cryst. Solids, 351. 604-611. 2005.