American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: http://www.sciepub.com/journal/ajmse Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
Go
American Journal of Materials Science and Engineering. 2014, 2(1), 7-12
DOI: 10.12691/ajmse-2-1-2
Open AccessArticle

Comparative Fatigue Study of Age Hardening Al-alloys Under Residual Stress Effects

M. Benachour1, , N. Benachour1, 2 and M. Benguediab3

1IS2M Laboratory, Mechanical Engineering, University of Tlemcen, Tlemcen, Algeria

2Physics Department, University of Tlemcen, Tlemcen, Algeria

3LMSR Laboratory, Department of Mechanical Engineering, University of Sidi Bel Abbes

Pub. Date: April 11, 2014

Cite this paper:
M. Benachour, N. Benachour and M. Benguediab. Comparative Fatigue Study of Age Hardening Al-alloys Under Residual Stress Effects. American Journal of Materials Science and Engineering. 2014; 2(1):7-12. doi: 10.12691/ajmse-2-1-2

Abstract

In this study, applied tensile plastic preload in 2024 and 7075 Al-alloys plates with central hole generate residual stress field. Around the central hole compressive residual stress was generated when finite element method was used and Von Mises criterion was applied for plastic preload. The level of compressive residual stress increase in increasing of applied plastic preload. Fatigue life and fatigue crack growth rate (FCGR) depend on the level of plastic preload. Consequently fatigue life increase and FCGR decrease. No high effect of level of applied plastic preload was shown for 7075 Al-alloy on fatigue behavior.

Keywords:
Al-alloys plastic preload fatigue crack compressive residual stress

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Withers, P.J., Bhadeshia H.K. “Residual stress - Part 2: Nature and Origins”, Mat. Scie. Techn., 17. 2001.
 
[2]  Lam, Y.C. Lian, K.S., “The effect of residual stress and its redistribution on fatigue crack growth”, Theor. Appl. Fract. Mech., 12. 59-66, 1989.
 
[3]  Pavier, M.J., Poussard, C.G.C., Smith D.J., “Effect of residual stress around cold worked holes on fracture under superimposed mechanical load”, Engineering Fracture Mechanics, 63. 751-773, 1999.
 
[4]  Wang, H., Buchholz, F.G., Richard, H.A., Jägg, S., Scholtes, B., “Numerical and experimental analysis of residual stress for fatigue crack growth”, Computational Materials Science, 16. 104-112, 1999.
 
[5]  John, R., Jata, K.V., Sadananda, K., “Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloy”, International Journal of fatigue, 25. 939-948, 2003.
 
[6]  Makabe, C. Purnowidodo, A., McEvily, A.J., “Effect of surface deformation and crack closure on fatigue crack propagation after overloading and under-loading”, International Journal of fatigue, 26, 1341-1348, 2004.
 
[7]  Benedetti, M., Vigilio Fontanari, V., Bandini, M., “A simplified approach for predicting plain and notch fatigue resistance of shot peened Al-7075-T651”, Procedia Engineering, 10, 2196-2201, 2011.
 
[8]  Beghini, M., Bertini, L., “Fatigue crack propagation through residual stress fields with closure phenomena”. Engineering Fracture Mechanics, 36. 379-387, 1990.
 
[9]  G. Gomez-Rosas, G., Rubio-Gonzalez, C., Ocan, J.L, Molpeceres, C., Porro, J.A., Chi-Moreno, W., Morales, M., “High level compressive residual stresses produced in aluminum alloys by laser shock processing”. Applied Surface Science, 252. 883-887, 2005.
 
[10]  Jones, K.W., Dunn M.L., “Fatigue crack growth through a residual stress field introduced by plastic beam bending”. Fatigue Fracture Engineering Materials Structures, 31, 863-875, 2008.
 
[11]  K.W. Jones, M.L. Dunn (2009). “Predicting fatigue crack growth from a preyielded hole”. International Journal of Fatigue, 31, pp 223-230.
 
[12]  Kamel, S., Wimpory, R.C., Hofmann, M., Nikbin, K.M., O'Dowd, N.P., Advanced Materials Research, 89-91. 275, 2010.
 
[13]  Al-Khazraji, A.N., Mohammed, F.M., Al-Taie, R.A., Eng. Tech. Journal, 29(3). 2011.
 
[14]  Nelson, D.L. “Effects of residual stress on fatigue crack propagation”, ASTM/STP 776. 172-194, 1982.
 
[15]  Stuart, D.H., Hill, M.R., Newman Jr., J.C. “Correlation of one-dimensional fatigue crack growth at cold-expanded holes using linear fracture mechanics and superposition”. Engineering Fracture Mechanics, 78. 1389-1406, 2011.
 
[16]  Mahmoud, S. Lease, K., “Two-dimensional and three-dimensional finite element analysis of critical crack-tip-opening angle in 2024 T351 aluminum alloy at four thicknesses”. Engineering Fracture Mechanics, 71. 1379-1391, 2004.
 
[17]  Landes, J.D., Lee, K., “Final report on computer controlled micro-indenter system”. Appendix A, The University of Tennessee Knoxvillen, Nov. 2010.
 
[18]  Forman, R.G, S.R Mettu, S.R., “Behavior of surface and corner cracks subjected to tensile and bending loads in Ti-6Al-4V alloy”. Fracture Mechanics 22nd Symposium, Vol. 1, ASTM STP 1131, H.A. Saxena and D.L. McDowell, eds., American Society for Testing and Materials, Philadelphia, 1992.
 
[19]  Harter, J.A., “AFGROW users guide and technical manual: AFGROW for Windows 2K/XP”. Version 4.0011.14, Air Force Research Laboratory, 2006.
 
[20]  Newman, J.C., “A Crack-Opening Stress Equation for Fatigue Crack Growth”. International Journal of Fracture, 24. R131-R135, 1984.