American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2013, 1(1), 12-17
DOI: 10.12691/ajmse-1-1-3
Open AccessArticle

Ab Initio Calculations of Electronic Properties of SixSn1-x Using Becke-Johnson Modified Method

N. Amrane, and M. Benkraouda

Pub. Date: February 28, 2013

Cite this paper:
N. Amrane and M. Benkraouda. Ab Initio Calculations of Electronic Properties of SixSn1-x Using Becke-Johnson Modified Method. American Journal of Materials Science and Engineering. 2013; 1(1):12-17. doi: 10.12691/ajmse-1-1-3


First-principles calculations have been used to investigate the electronic properties of the ternary alloy SixSn1-x using full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT).The energy bands along high symmetry directions, the density of states and valence charge density distributions cut through various planes are presented. The first principles band structure calculations reported here were carried out using Becke-Johnson Modified method. This exchange potential provides significantly improved results. The virtual crystal approximation (VCA) was adopted to model the alloy. The SixSn1-x binary alloy shows the direct band gap for appropriate composition of Si and Sn and analysis suggests also pseudo-direct band gaps. The results have been discussed in terms of previously existing experimental and theoretical data.

plane wave method band structure density of states

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 12


[1]  Jain, C., Willis J.R., Bullogh R.,A review of theoretical and experimental work on the Structure of GexSi1-x strained layers and superlattices, Adv. Phys. (39) 127.1990.
[2]  Moontragoon, P., Ikonic Z., Harrison P., Band structure calculation of SiGeSn alloy: achieving direct band gap materials, Semicond. Sci. Technol. (22) 742.2007.
[3]  Volkov B. A., Electronic properties of narrow gap IVVI semiconductors, Phys.-Usp. (46) 984.2003.
[4]  Kshrsagar,A. and Kumbhojkar,N, Empirical pseudo-potential studies on electronic structure of semiconducting quantum dots, Bull. Mater. Sci., (31) 3.297-307. June 2008.
[5]  Friedel, P., Hybertsen, M. S. and Schlüter, M., Local empirical pseudopotential approach to the optical properties of Si/Gesuperlattices, Phys. Rev. B (39), 7974-7977. 1989.
[6]  Benkabou, K., Aoumeur, F.Z., Abid, H., Amrane, N, Tight binding calculation of electronic properties of ternary alloy ZnS Se1-x, Physica B (337). 147-153. 2003.
[7]  Ryu, C. S., Oh, G. Y., and Lee, M. H., Electronic properties of a tight-binding and a Kronig-Penney model of the Thue-Morse chain, Phys. Rev. B (48). 132-141. 1993.
[8]  Kumar, S., Maurya,T. K and Auluck, S.J., Electronic and optical properties of ordered BexZn1-xSe alloys by the FPLAPW method, Phys.: Condens. Matter (20). 075205. 2008.
[9]  Kumar,S. et al, Band structure and optical properties of hexagonal In-rich In(x)Al(1-x)N alloys, J. Phys.: Condens. Matter (23). 475801. 2011.
[10]  Engel,E. and Vosko, S.H., Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations, Phys.Rev.B(47).13164. 1993.
[11]  Becke,A. D. and. Johnson, E. R, A simple effective potential for exchange, J. Chem. Phys. (124). 221101. 2006.
[12]  Kobayashi, N., Zhu, D.H., Katsumata, H., Kakemoto, H., Hasegawa, M., Hayashi, N.,. Makita,Y., Uekusa, S., Tsukamoto, T., Crystallization of SiSn and SiSnC layers in Si by solid phase epitaxy and ion-beam-induced epitaxy, Nucl. Instr. Eth. Phys. Res. (121) 199-202. 1997.
[13]  Maruyama,T., Akagi, H., Thin Films of Amorphous Silicon-Tin Alloy Prepared by RadioFrequency Magnetron Sputtering, J. Electrochem. Soc. 4350. 1997.
[14]  CharrierA. et al, Contrasted electronic properties of Sn-adatom-based (√3×√3)R30° reconstructions on Si(111), Phys. Rev. B. (64). 115407. 2001.
[15]  Schwarz, K., Blaha P., Madsen, G.K.H., Electronic structure calculations of solids using the WIEN2K package. Comput. Phys. Commun. (147). 71. 2002.
[16]  Schwarz, K., Blaha,P., Solid state calculations using WIEN2K, Comput. Mater. Sci. (28) 259. 2003.
[17]  Ceperley, D.M., Alder, B.I., Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. (45) 566. 1990.
[18]  Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J., Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule, Phys.Rev.B (24). 864. 1981.
[19]  Blaha, P., Schwarz K., Sorantin, P., Trikey, S.B., Full-potential, linearized augmented plane wave programs for crystalline systems, Comput.Phys.Commun.(59). 399. 1990.
[20]  Andersen, O.K., Linear methods in band theory, Phys.Rev.B (12).3060-3083. 1975.
[21]  Singh, D., Ground-state properties of lanthanum. Treatment of extended-core states, Phys.Rev.B (43).6388-6392. 1991.
[22]  Sjöstedt, E., Nordström L., Singh, D.J., An alternative way of linearizing the augmented plane-wave method, Solid State Comm. (114)15-20. 2000.
[23]  Blaha, P., Schwarz K., Madsen G.K.H., Kvanicka, D. Luitz, J., WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program For Calculating Crystal properties, Vienna University of Technology,Austria 2001.
[24]  Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations, Phys.Rev.B13 (1976) 5188.
[25]  Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett.(13).136406. 2008.
[26]  Camargo-Martinez, J. A., Baquero, R., Performance of the modified Becke-Johnson potential for semiconductors, Phys. Rev. B (86). 195106. 2012
[27]  Nakahara, J., Kobayashi, K. and Fujii, A., Edge Absorption Stimulated by Disorder in Mixed Crystals of Thallous Halides, J. Phys. Soc. Jpn. (37) 1319 .1974.
[28]  Koller, D., Tran, F. and Blaha, P., Merits and limits of the modified Becke-Johnson exchange potential, Phys. Rev. B (83). 195134. 2011.
[29]  Schwarz, K., BlahaP. and Trickey, S.B., Electronic structure of solids with WIEN2k, Molecular Physics, (108)3147-3166. 2010.
[30]  Reshak, A. H., Jamal, M., DFT calculation for elastic constants of orthorhombic structure within WIEN2K code: A new package (ortho-elastic), Journal of Alloys and Compounds (543)147-151. 2012.
[31]  Straub D., Levy L. and Himpsel, F.J., Conduction Band and Surface State Critical Points in Si: An Inverse Photoemission Study, Phys. Rev. Lett. (54). 142. 1985.
[32]  Cardona M. and Greenway,D.L., Reflectivity of gray tin in the fundamental absorption region, Phys. Rev. (125)1291. 1962.
[33]  Bouhafs, B., Benkabou, F., Khelifa, B., Dufour,J.P., Energy band structure calculation of GexSn1-x and Six Sn1-x alloys, Infrared Physics and Technol. (36). 967-972. 1995.
[34]  Phillips, J.C., Bonds and Bands in semiconductors, Academic Press, New York, 1973.
[35]  Vogl, P., Hjalmarson H.P., Dow, J.D., A semi-empirical tight-binding theory of the electronic structure of semiconductors, J. Phys. Chem. Solids (44).365. 1983.