American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2013, 1(1), 6-11
DOI: 10.12691/ajmse-1-1-2
Open AccessArticle

Preparation of Alumina-Iron Oxide Compounds by Coprecipitation Method and Its Characterization

Fahmida Gulshan, and Kiyoshi Okada

Pub. Date: March 15, 2013

Cite this paper:
Fahmida Gulshan and Kiyoshi Okada. Preparation of Alumina-Iron Oxide Compounds by Coprecipitation Method and Its Characterization. American Journal of Materials Science and Engineering. 2013; 1(1):6-11. doi: 10.12691/ajmse-1-1-2


Fe2O3-Al2O3 compounds with different Fe/Al compositions were synthesized by coprecipitation (CP) method and calcined at 300°-1000°C. The formation of crystalline phases (e.g., maghemite, hematite), transformation temperature, specific surface area, lattice parameter, crystallite size, magnetic properties of iron oxide were all affected by the component ratio and thermal treatment.

Fe2O3-Al2O3 compounds coprecipitation maghemite hematite lattice parameter crystallite size

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 11


[1]  Lee, E. H. “Iron Oxide Catalysts for Dehydrogenation of Ethylbenzene in the Presence of Steam”, Catalysis Reviews, 8(1). 285.1974.
[2]  Lee, E. H. and Oliver, G. D., “Calculating Homogeneous Reaction Rates and Orders in a Flowing Gas Reactor. Thermal Decomposition of Ethylbenzene”, Ind. Eng. Chem., 1959, 51 (11). 1351-1352. November .1959.
[3]  Brown,I. W. M., Mackenzie, K. J. D. and Cardile,C. M., “Lattice parameters and Mössbauer spectra of iron-containing corundum (α-Al2O3)”, Journal of Materials Science Letters, 6(5).535-540. May .1987.
[4]  Grave,E.De., Bowen, L.H. and Weed, S.B., “Mossbauer Study Of Aluminum-Substituted Hematites”, Journal of Magnetism and Magnetic Materials, 27(1). 98-108. 1982.
[5]  Amarasiriwardena,D.D., Grave, E.De. and Bowen L.H., “Quantitative Determination of Aluminum-Substituted Goethite-Hematite Mixtures by Mössbauer Spectroscopy”, Clays and Clay Minerals, 34( 3). 250-256. June .1986.
[6]  Grave, E.De., Bowen, L.H., Vochten, R. and Vandenberghe,R.E., “The effect of crystallinity and Al substitution on the magnetic structure and morin transition in hematite”, Journal of Magnetism and Magnetic Materials, 72(2), 141-151. April. 1988.
[7]  Wolska, E. and Szajda, W., “The effect of cationic and anionic substitution on the α-(Al, Fe)2O3 lattice parameters”, Solid State Ionics, 28 (2). 1320-1323. September. 1988.
[8]  Tsuchida, T. and Sugimoto,K., “Effect of grinding of mixtures of goethite and hydrated alumina on the formation of Fe2O3-Al2O3 solid solutions”, Thermochim. Acta, 170. 41-50.1990.
[9]  Pownceby,M.I., Constanti-Carey, K.K. and Fisher-White, M.J., “Subsolidus Phase Relationships in the System Fe2O3-Al2O3-TiO2 between 1000° and 1300°C”, Journal of the American Ceramic Society, 86(6). 975-980. June. 2003.
[10]  Nedelec, J.M,. Avignant, D. and Mahiou, R., “Soft chemistry routes to YPO4-based phosphors: dependence of textural and optical properties on synthesis pathways”, Chemistry of materials, 14 (2). 651-655. 2002.
[11]  Li, F.B., Li, X.Z., Liu, C.S. and Liu, T.X., “Effect of alumina on the photocatalytic activity of iron oxides for bisphenolA degradation”, J. Hazard. Mater. 149. 199-207. 2007.