American Journal of Materials Science and Engineering
ISSN (Print): 2333-4665 ISSN (Online): 2333-4673 Website: Editor-in-chief: Dr. SRINIVASA VENKATESHAPPA CHIKKOL
Open Access
Journal Browser
American Journal of Materials Science and Engineering. 2021, 9(1), 21-26
DOI: 10.12691/ajmse-9-1-4
Open AccessArticle

Microstructured Optical Fibers Made of Chalcogenide Glass for the Generation of Optical Functions

M. Ndiaye1, , N. M. Ndiaye1 and B. D Ngom1

1Laboratoire de Photonique Quantique, d’Energie et de Nano-Fabrication, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar (UCAD) B.P. 5005 Dakar-Fann Dakar, Sénégal

Pub. Date: September 12, 2021

Cite this paper:
M. Ndiaye, N. M. Ndiaye and B. D Ngom. Microstructured Optical Fibers Made of Chalcogenide Glass for the Generation of Optical Functions. American Journal of Materials Science and Engineering. 2021; 9(1):21-26. doi: 10.12691/ajmse-9-1-4


This work reports on the fabrication and optical characterization of microstructured optical fibers (MOF) made of chalcogenide glass AS2S3. For the fabrication, the Stack and Draw method was used and for the characterization, a simulation software (OptiSystem) was also used. The results of this study are as follows: the refractive index of the microstructured chalcogenide glass fibre is 1.1.10-18 m2/w much higher than that of standard silica fibre, which is 2.6 10-20 m2/w. The non-linear refractive index of these chalcogenide fibers provided to be 100 times higher than that of the standard fiber. The characterization of the Brillouin and Raman diffusion effects also gave excellent results, with respective gain values of 8.10-10 W-1 Km-1 and 1.8.10-10 W-1 Km-1, thus validating an exacerbation of the non-linear effects within this type of fiber. These results were then used to generate optical functions.

optical functions microstructured optical fibers non-linear properties

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 7


[1]  M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal. High bit rate all-optical signal processing in a fiber photonic wire. Opt. Express, 16(15): 11506-11512, 2008.
[2]  D-Il Yeom, E. C. Mägi, M. A. F. Lamont, M. R. E.and Roelens, L Fu, and B. J. Eggleton. Low- threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett., 33(7): 660-662, 2008.
[3]  J. M. Dudley, G. Genty, and S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78(4): 1135-1184, Oct 2006.
[4]  I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler. Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber. Opt. Lett., 26(9): 608-610, 2001.
[5]  S.A. Diddams, D.J. Jones, S.T. Ye, J.and Cundiff, J. L. Hall, J. K. Ranka, R.S. Windeler, R. Holz- warth, T. Udem, and T. W. Hänsch. Direct link between microwave and optical frequencies with a 300 thz femtosecond laser comb. Phys. Rev. Lett., 84(22): 5102-5105, May 2000.
[6]  P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richard- son. 2r-regenerative all-optical switch based on a highly nonlinear holey fiber. Opt. Lett., 26(16): 1233-1235, 2001.
[7]  F. Benabid, J. Knight, and P. Russell. Particle levitation and guidance in hollow-core photonic crystal fiber. Opt. Express, 10(21): 1195-1203, 2002.
[8]  L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal. Ir supercontinuum generation in as-se photonic crystal fiber. In in Proc. Optical Fiber Communications Conference, Anaheim USA, March 2007, TuC5, March 2007.
[9]  T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto. Dispersion shifted bi2o3-based photonic crystal fiber. In n Proc. European Conference on Optical Communication (ECOC 2008), Cannes France, 2008.
[10]  Bertrand Kibler: Non-linear propagation of ultra-short pulses in new generation optical fibres. PhD thesis, University of Franche-Comté - Ecole Doctorale Sciences Physiques pour l'Ingénieur et Microtechniques, Besançon, 2007.
[11]  J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, J. Y. Y Finazzi, V. and. Leong, P. Petropoulos, J. C. Flanagan, G . Brambilla, M. Feng, and D. J. Richardson. Mid- ir supercontinuum generation from nonsilica microstructured optical fibers.Top. Quantum Electron., 13: 738-749, 2007.
[12]  P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto. Over 4000 nm bandwidth of mid-ir supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite pcfs. Opt. Express, 16(10): 7161-7168, 2008.
[13]  C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot. All-fibered high-quality low duty-cycle 160-ghz femtosecond pulse source. Laser Physics Letters, 5(11): 817-820, 2008.
[14]  M. Pelusi, V. G. Ta’eed, L. Fu, E. C. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE J. Sel. Top. Quantum Electron., 14: 529-539, 2008.
[15]  Ning-Ning Feng, Gui-Rong Zhou, and Wei-Ping Huang. An efficient split-step time-domain beam-propagation method for modeling of optical waveguide devices. J. Lightwave Technol., 23(6): 2186, 2005.
[16]  P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. Moore, K. Frampton, D. Richardson, and T. Monro. Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. Opt. Express, 11(26): 3568-3573, 2003.
[17]  K.Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and M. Thévenaz. Highly efficient brillouin slow and fast light using as2se3 chalcogenide fiber. Opt. Express, 14(13): 5860-5865, 2006.
[18]  L. Fu, M. Rochette, V. Ta’eed, D. Moss, and B. Eggleton. Investigation of self-phase modulation based optical regeneration in single mode as2se3 chalcogenide glass fiber. Opt. Express, 13(19): 7637-7644, 2005.
[19]  L. Fu, V. G. Taeed, Eric C Magi, Ian C. M Littler, Mark D Pelusi, Michael R. E Lamont, Alexan- der Fuerbach, Hong C Nguyen, Dong-Il Yeom, and Benjamin J Eggleton. Highly nonlinear chalcogenide fibres for all-optical signal processing. OQE, 2007.
[20]  L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville. Fabrication of complex structures of holey fibers in chalcogenide glass.Opt. Express, 14(3): 1280-1285, 2006.
[21]  K.S. Abedin. Observation of strong stimulated brillouin scattering in single-mode as2se3 chalcogenide fiber. Opt. Express, 13(25): 10266-10271, 2005.
[22]  C. Florea. Stimulated brillouin scattering in single-mode as2s3 and as2se3 chalcogenide fi- bers. Opt. Express, 14, 2006.
[23]  K.S. Abedin. Brillouin amplification and lasing in a single-mode as2se3 chalcogenide fiber. Opt. Lett., 31(11): 1615-1617, 2006.
[24]  Ojas P. Kulkarni, Chenan Xia, Dong Joon Lee, Malay Kumar, Amos Kuditcher, Mohammed N. Islam, Fred L. Terry, Mike J. Freeman, Bruce G. Aitken, Stephen C. Currie, Joseph E. McCarthy, Mark L. Powley, and Dan A. Nolan. Third order cascaded raman wavelength shifting in chalcogenide fibers and determination of raman gain coefficient. Opt. Express, 14(17): 7924-7930, 2006.
[25]  S. D. Jackson and P.H. Muir. Theory and numerical simulation of nth-order cascaded raman fiber lasers. J. Opt. Soc. Am. B, 18(9): 1297-1306, 2001.
[26]  S. K. Varshney, K. Saitoh, K. Iizawa, Y. Tsuchida, M. Koshiba, and R. K. Sinha. Raman amplification characteristics of as2se3 photonic crystal fibers.Opt. Lett., 33(21): 2431-2433, 2008.
[27]  C. Baker and M. Rochette. Highly nonlinear hybrid asse-pmma microtapers.Opt. Express, 18(12): 12391-12398, 2010.
[28]  G.P. Agrawal. Nonlinear fiber optics. San Francisco, 2001.
[29]  J. Fatome, S. Pitois, and G. Millot. Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability. OFT, 12: 243-250, 2006.