American Journal of Medicine Studies:

Home » Journal » AJMS » Archive » Volume 2, Issue 1

Article

Study of Anthranylic Acid Derivatives: Mefenamic Acid and Its Various Analogues

1Department of Pharmacy, GRD (PG) IMT, Dehradun, India


American Journal of Medicine Studies. 2014, 2(1), 24-30
DOI: 10.12691/ajms-2-1-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Mohammad Asif. Study of Anthranylic Acid Derivatives: Mefenamic Acid and Its Various Analogues. American Journal of Medicine Studies. 2014; 2(1):24-30. doi: 10.12691/ajms-2-1-4.

Correspondence to: Mohammad  Asif, Department of Pharmacy, GRD (PG) IMT, Dehradun, India. Email: aasif321@gmail.com

Abstract

Anthranylic acid derivatives are direct structural analogs of salicylic acid derivatives. They possess analgesic, anti-inflammatory, and antipyretic activity. They are similar to pyrazolones in terms of analgesic and antipyretic activity, yet they exceed the anti-inflammatory activity of salicylates. The mechanism of action of this series of nonsteroid, anti-inflammatory analgesics is not conclusively known. One of the early advances in the search for nonnarcotic analgesics was centered in the N-arylanthranilic acids. The outstanding characteristic of mefenamic acid is primarily anti-inflammatory , and secondarily, some possess analgesic properties.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Charlier, C. and Michaux, C., Dual inhibiton of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti inflammatory drugs. Eur J Med Chem, 2003;38: 645-659.
 
[[2]  Unangst, P. C. Connor, D. T. Centenko, W. A. Sorenson, R. J. Kostlan, R. K. Sircar, J. C. Wright, C. D. Schrier, D. J. and Dyer, R. D., Synthesis and biological evaluation of 5-[[3, 5-Bis (1,1-dimethylethyl)-4-hydroxyphenyl] methylene] oxazoles,-thiazoles and imidazoles: Novel dual 5-lipoxygenase and cyclooxygenase inhibitors with anti inflammatory activity. J Med Chem, 1994; 37 322-328.
 
[[3]  De Leval, X. Delarge, J. J. Pirotte, B. and Dogne, J. M., New trends in dual 5 LOX/COX inhibition. Curr Med Chem, 2003; 9: 941-962.
 
[[4]  Lima, P. C. Lima, L.M. da Silva, K. C. M. Leda, P. H. O. de Miranda, A. L. P. Fraga, C. A. M. and Barreiro, E. J., Synthesis and analgesic activity of novel Nacylarylhydrazones and isosters, derived from natural safrole. Eur J Med Chem, 2000; 35: 187-203.
 
[[5]  Figueiredo, J. M. Camara, C. A. Amarante, E. G. Miranda, A. L. P. Santos, F. M. Radrigues, C. R. Fraga, C. A. M. and Barreiro, E. J., Design and synthesis of novel potent antinociceptive Agents: Methyl-imidazolyl NAcylharazone derivatives. Bioorg Med Chem, 2000; 8: 2243-2248.
 
Show More References
[6]  Boschelli, D. H. Connor, D. T. Bornemeier, D. A. Dyer, R. D. Kennedy, J. A. Kuipers, P. J. Okonkwo, G. C. Schrier, D. J. and Wright, C. D., 1,3,4-oxadiazole, 1, 3, 4- thiadiazole, and 1, 2, 4-triazole analogs of the fenamates: In vitro inhibition of cyclooxygenase and 5-lipoxygenase Activities. J Med Chem, 1993; 36: 1802-1810.
 
[7]  Soll AH, Weinstein WM, Kurata J et al. Nonsteroidal anti-inflammatory drugs and peptic ulcer disease. Ann Intern Med. 1991; 114:307-19.
 
[8]  Kar A. Analgesic and antipyretic. Chapter 10, Medicinal chemistry, New Age Publication. 2007, 294, 295, 301.
 
[9]  AHFS drug information . McEvoy GK, ed. Mefenamic acid. Bethesda, MD: American Society of Health-System Pharmacists; 2007:2096-9.
 
[10]  Vardanyan R.S. and Hruby V.J. Analgesics, Synthesis of Essential Drugs, Elsevier, 2006, Pages 19-55. ISBN: 978-0-444-52166-8.
 
[11]  Allais, A., Rousseau, G., Girault, P., et al. Sur l’activite´ analge´sique et anti inflammatoire des 4-(20-alcoxycarbonyl phe´nylamino) quinoleınes. Eur. J.Med Chem. 1966; 1: 65-70.
 
[12]  Aguiar, A.J. and Zelmer, J.E. Dissolution behavior of polymorphs of chloramphenicol palmitate and mefenamic acid. J. Pharm. Sci. 1969;58: 983–987.
 
[13]  Dittert, L.W., Caldwell, H.C., Ellison, T., et al. Carbonate ester prodrugs of salicylic acid. J. Pharm. Sci. 1968; 57: 828–831.
 
[14]  Food and Drug Administration. Labeling revisions for NSAIDs. FDA Drug Bull. 1989; 19:3-4.
 
[15]  Searle. Cytotec (misoprostol) prescribing information. Skokie, IL; 1989 Jan.
 
[16]  US Food and Drug Administration. Proposed NSAID Package Insert Labeling Template 1. Accessed 10 Oct 2005.
 
[17]  Buchanan RA, Eaton CJ, Koeff ST et al. The breast milk excretion of mefenamic acid. Curr Ther Res Clin Exp. 1968; 10: 592-7.
 
[18]  Chan TY. Adverse interactions between warfarin and nonsteroidal antinflammatory drugs: mechanisms, clinical significance, and avoidance. Ann Pharmacother. 1995; 29:1274-83.
 
[19]  Neuvonen PJ, Kivistö KT. Enhancement of drug absorption by antacids: an unrecognized drug interaction. Clin Pharmacokinet. 1994; 27:120-8.
 
[20]  Diana FJ, Veronich K, Kapoor AL. Binding of nonsteroidal anti-inflammatory agents and their effect on binding of racemic warfarin and its enantiomers to human serum albumin. J Pharm Sci. 1989; 78: 195-9.
 
[21]  MacKenzie IZ, Graf AK, Mitchell MD. Prostaglandins in the fetal circulation following maternal ingestion of a prostaglandin synthetase inhibitor during mid-pregnancy. Int J Gynaecol Obstet. 1985; 23: 455-8.
 
[22]  American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines. Guidelines for the management of rheumatoid arthritis; 2002 update. Arthritis Rheum. 2002; 46:328-46.
 
[23]  Anon. Drugs for rheumatoid arthritis. Med Lett Drugs Ther. 2000; 42:57-64.
 
[24]  Nonsteroidal anti-inflammatory drug interactions: Lithium. In: Hansten PD, Horn JR. Drug interactions and updates. Vancouver, WA: Applied Therapeutics, Inc; 1993:608-9.
 
[25]  Miller LG, Bowman RC, Bakht F. Sparing effect of sulindac on lithium levels. J Fam Prac. 1989; 28:592-3.
 
[26]  Corticosteroid interactions: nonsteroidal anti-inflammatory drugs (NSAIDs). In: Hansten PD, Horn JR. Drug interactions and updates. Vancouver, WA: Applied Therapeutics, Inc; 1993:562.
 
[27]  Garcia Rodriguez LA, Jick H. Risk of upper gastrointestinal bleeding and perforation associated with individual non-steroidal anti-inflammatory drugs. Lancet. 1994; 343:769-72.
 
[28]  Hollander D. Gastrointestinal complications of nonsteroidal anti-inflammatory drugs: prophylactic and therapeutic strategies. Am J Med. 1994; 96:274-81.
 
[29]  Schubert TT, Bologna SD, Yawer N et al. Ulcer risk factors: interaction between Helicobacter pylori infection, nonsteroidal use, and age. Am J Med. 1993; 94:413-7.
 
[30]  Piper JM, Ray WA, Daugherty JR et al. Corticosteroid use and peptic ulcer disease: role of nonsteroidal anti-inflammatory drugs. Ann Intern Med. 1991; 114:735-40.
 
[31]  Bateman DN, Kennedy JG. Non-steroidal anti-inflammatory drugs and elderly patients: the medicine may be worse than the disease. BMJ. 1995; 310:817-8.
 
[32]  Lithium interactions: diclofenac. In: Hansten PD, Horn JR. Drug interactions and updates. Vancouver, WA: Applied Therapeutics, Inc; 1993:607.
 
[33]  Hawkey CJ. COX-2 inhibitors. Lancet. 1999; 353:307-14.
 
[34]  Kurumbail RG, Stevens AM, Gierse JK et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996; 384:644-8.
 
[35]  DeWitt DL, Bhattacharyya D, Lecomte M et al. The differential susceptibility of prostaglandin endoperoxide H synthases-1 and -2 to nonsteroidal anti-inflammatory drugs: aspirin derivatives as selective inhibitors. Med Chem Res. 1995; 5:325-43.
 
[36]  Riendeau D, Charleson S, Cromlish W et al. Comparison of the cyclooxygenase-1 inhibitory properties of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, using sensitive microsomal and platelet assays. Can J Physiol Pharmaco. 1997; 75:1088-95.
 
[37]  Cryer B, Dubois A. The advent of highly selective inhibitors of cyclooxygenase—a review. Prostaglandins Other Lipid Mediators. 1998; 56:341-61.
 
[38]  Morrison BW, Daniels SE, Kotey P et al. Rofecoxib, a specific cyclooxygenase-2 inhibitor, in primary dysmenorrhea: a randomized controlled study. Obstet Gynecol. 1999; 94:504-8.
 
[39]  Simon LS, Role and regulation of cyclooxygenase-2 during inflammation. Am J Med. 1999; 106(Suppl 5B):37-42S.
 
[40]  Food and Drug Administration. Analysis and recommendations for agency action regarding non-steroidal anti-inflammatory drugs and cardiovascular risk. 2005 Apr 6.
 
[41]  Cush JJ. The safety of COX-2 inhibitors: deliberations from the February 16-18, 2005, FDA meeting. From the American College of Rheumatology website. Accessed 2005 Oct 12.
 
[42]  McGettigan P, Henry D. Cardiovascular risk and inhibition of cyclooxygenase: a systematic review of observational studies of selective and nonselective inhibitors of cyclooxygenase 2. JAMA. 2006; 296: 1633-44.
 
[43]  Kearney PM, Baigent C, Godwin J et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006; 332: 1302-5.
 
[44]  Graham DJ. COX-2 inhibitors, other NSAIDs, and cardiovascular risk; the seduction of common sense. JAMA. 2006; 296:1653-6.
 
[45]  Chou R, Helfand M, Peterson K et al. Comparative effectiveness and safety of analgesics for osteoarthritis. Comparative effectiveness review no. 4. (Prepared by the Oregon evidence-based practice center under contract no. 290-02-0024.). Rockville, MD: Agency for Healthcare Research and Quality. 2006 Sep.
 
[46]  Wolfe MM, Lichtenstein DR, Singh G. Gastrointestinal toxicity of nonsteroidal antiinflammatory drugs. N Engl J Med. 1999; 340:1888-99.
 
[47]  First Horizon Pharmaceutical Corporation. Ponstel (mefenamic acid) capsules prescribing information. Alpharetta, GA; 2006 Jan.
 
[48]  Singh G, Triadafilopoulos G. Epidemiology of NSAID induced gastrointestinal complications. J Rheumatol. 1999; 26(suppl 56):18-24.
 
[49]  Lanza FL, and the Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology. A guideline for the treatment and prevention of NSAID-induced ulcers. Am J Gastroenterol. 1998; 93:2037-46.
 
[50]  Almasirad A, Tajik M, Bakhtiari D, Abdollahi ASM, Zamani MJ, Khorasani R, Esmaily H. Synthesis and analgesic activity of Narylhydrazone derivatives of mefenamic acid. J Pharm Pharmaceut Sci, 8(3):419-425, 2005.
 
[51]  Ribeiro, I. G. da Silva, K. C. M. parrini, S. C. de Miranda, A. L. P. Fraga, C. A. M. Barreiro, E. J., Synthesis and antinociceptive properties of new structurally planned imidazo [1, 2-a] pyridine 3-acylarylhydrazone derivatives. Eur J Med Chem, 1998; 33: 223-235.
 
[52]  Leite, L. F. C. C. Ramos, M. N. da Silva, J. B. P. Miranda, A. L. P. Fraga, C. A. M. and Barreiro, E. J.,Synthesis and analgesic profile of novel N-containing heterocycle derivatives: arylidene 3-phenyl-1, 2, 4-oxadiazole-5-carbohydrazide. IL Farmaco, 1999; 54: 747-757.
 
[53]  Alfred, S. Fitzi, K. and Pfister, R., Analgesic cinnamic acid derivatives. South African Patent 6, 705, 990. 1963; Chem Abstr, 1969, 70, p 67938.
 
[54]  Al-Haboubi, H. A. Zeitlin, I. J., Re-appraisal of the role of histamine in carrageenan induced oedema. Eur J Pharmacol, 1983; 88: 160-176.
 
Show Less References

Article

Genotype and Allele Frequencies of MDR-1 Gene Polymorphism in Jordanian and Sudanese Populations

1Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain

2Department of Anatomy, Faculty of Medicine, Suez Canal University, Ismailia, Egypt

3Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain

4Central Laboratory, Ministry of Science and Technology, Khartoum, Sudan

5College of Animal Production Science and Technology, Sudan University of Science and Technology, Khartoum, Sudan


American Journal of Medicine Studies. 2014, 2(1), 19-23
DOI: 10.12691/ajms-2-1-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Abdel Halim Salem, Muhalab Ali, Amir Ibrahim, Mohamed Ibrahim. Genotype and Allele Frequencies of MDR-1 Gene Polymorphism in Jordanian and Sudanese Populations. American Journal of Medicine Studies. 2014; 2(1):19-23. doi: 10.12691/ajms-2-1-3.

Correspondence to: Abdel  Halim Salem, Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain. Email: ahaleemfd@agu.edu.bh

Abstract

The aim of this study was to determine the genotype and allele frequencies of MDR1 gene C3435T polymorphism in Jordanian and Sudanese populations, and to compare them with the frequencies established in various ethnic groups. Genotyping was carried out on 116 unrelated Jordanian and 131 Sudanese subjects. The genotypes of polymorphic position C3435T were determined by PCR-RFLP assay. Results showed that 20.7% of the studied Jordanian subjects were homozygous for the CC genotype, 51.7% were heterozygous for the CT genotype and 27.6% were homozygous for the TT genotype. Among Sudanese subjects, the genotype frequencies were: CC 52.7%, CT 42.0% and TT 5.3%. The frequencies of the 3435T variant in the MDR-1 Gene in Jordanians and Sudanese were found to be 0.534 and 0.263, respectively. According to the distribution of the C3435T SNP, Jordanians were resemble Asians and Europeans but were different significantly from Sudanese, while Sudanese were similar to Africans. In conclusion, the observed distribution of the C3435T SNP in the Jordanian and Sudanese populations was within the range detected in other populations. The data obtained may give the basis for predicting effects of drugs that are substrates for MDR-1 in Jordanian and Sudanese populations and may be useful for individualized therapy of some diseases.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Bosch, T. M., Meijerman, I., Beijnen, J. H. and Schellens, J. H., “Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer,” Clin Pharmacokinet 45 (3), 253-285. 2006.
 
[[2]  Wu, A. H., “Drug metabolizing enzyme activities versus genetic variances for drug of clinical pharmacogenomic relevance,” Clin Proteomics 8 (1), 12. 2011.
 
[[3]  Juliano, R. L. and Ling, V., “A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants,” Biochim Biophys Acta 455 (1), 152-162. 1976.
 
[[4]  Edwards, J. E., Alcorn, J., Savolainen, J., Anderson, B. D. and McNamara, P. J., “Role of P-glycoprotein in distribution of nelfinavir across the blood-mammary tissue barrier and blood-brain barrier,” Antimicrob Agents Chemother 49 (4), 1626-1628. 2005.
 
[[5]  Melaine, N., Lienard, M. O., Dorval, I., Le Goascogne, C., Lejeune, H. and Jegou, B., “Multidrug resistance genes and p-glycoprotein in the testis of the rat, mouse, Guinea pig, and human,” Biol Reprod 67 (6), 1699-1707. 2002.
 
Show More References
[6]  Beaulieu, E., Demeule, M., Ghitescu, L. and Beliveau, R., “P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain,” Biochem J 326 ( Pt 2), 539-544. 1997.
 
[7]  Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I. and Willingham, M. C., “Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues,” Proc Natl Acad Sci U S A 84 (21), 7735-7738. 1987.
 
[8]  Breier, A., Barancik, M., Sulova, Z. and Uhrik, B., “P-glycoprotein--implications of metabolism of neoplastic cells and cancer therapy,” Curr Cancer Drug Targets 5 (6), 457-468. 2005.
 
[9]  Jamroziak, K. and Robak, T., “Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies,” Hematology 9 (2), 91-105. 2004.
 
[10]  Ambudkar, S. V., Kimchi-Sarfaty, C., Sauna, Z. E. and Gottesman, M. M., “P-glycoprotein: from genomics to mechanism,” Oncogene 22 (47), 7468-7485. 2003.
 
[11]  Komar, A. A., “Silent SNPs: impact on gene function and phenotype,” Pharmacogenomics 8 (8), 1075-1080. 2007.
 
[12]  Lu, P. H., Wei, M. X., Yang, J., Liu, X., Tao, G. Q., Shen, W. and Chen, M. B., “Association between two polymorphisms of ABCB1 and breast cancer risk in the current studies: a meta-analysis,” Breast Cancer Res Treat 125 (2), 537-543. 2011.
 
[13]  Hoffmeyer, S., Burk, O., von Richter, O., Arnold, H. P., Brockmoller, J., Johne, A., Cascorbi, I., Gerloff, T., Roots, I., Eichelbaum, M. and Brinkmann, U.,”Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo,” Proc Natl Acad Sci U S A 97 (7), 3473-3478. 2000.
 
[14]  Rubis, B., Holysz, H., Barczak, W., Gryczka, R., Lacinski, M., Jagielski, P., Czernikiewicz, A., Polrolniczak, A., Wojewoda, A., Perz, K., Bialek, P., Morze, K., Kandula, Z., Lisiak, N., Mrozikiewicz, P. M., Grodecka-Gazdecka, S. and Rybczynska, M., “Study of ABCB1 polymorphism frequency in breast cancer patients from Poland,” Pharmacol Rep 64 (6), 1560-1566. 2012.
 
[15]  Brinkmann, U., Roots, I. and Eichelbaum, M., “Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy,” Drug Discov Today 6 (16), 835-839. 2001.
 
[16]  Ameyaw, M. M., Regateiro, F., Li, T., Liu, X., Tariq, M., Mobarek, A., Thornton, N., Folayan, G. O., Githang'a, J., Indalo, A., Ofori-Adjei, D., Price-Evans, D. A. and McLeod, H. L., “MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity,” Pharmacogenetics 11 (3), 217-221. 2001.
 
[17]  Balram, C., Sharma, A., Sivathasan, C. and Lee, E. J., “Frequency of C3435T single nucleotide MDR1 genetic polymorphism in an Asian population: phenotypic-genotypic correlates,” Br J Clin Pharmacol 56 (1), 78-83. 2003.
 
[18]  Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A laboratory Manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 1989).
 
[19]  Hamdy, S. I., Hiratsuka, M., Narahara, K., Endo, N., El-Enany, M., Moursi, N., Ahmed, M. S. and Mizugaki, M., “Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population,” Br J Clin Pharmacol 55 (6), 560-569. 2003.
 
[20]  Guo, S. W. and Thompson, E. A., “A Monte Carlo method for combined segregation and linkage analysis,” Am J Hum Genet 51 (5), 1111-1126. 1992.
 
[21]  Excoffier, L., Laval, G. and Schneider, S., “Arlequin ver. 3.0: An integrated software package for population genetics data analysis,” Evolutionary Bioinformatics online 1, 47-50. 2005.
 
[22]  Galas, D. J. and Hood, L., “Systems Biology and Emerging Technologies Will Catalyze the Transition from Reactive Medicine to Predictive, Personalized, Preventive and Participatory (P4) Medicine,” Interdisciplinary Bio Central 1: (6), 1-5. 2009.
 
[23]  Turgut, S., Yaren, A., Kursunluoglu, R. and Turgut, G., “MDR1 C3435T polymorphism in patients with breast cancer,” Arch Med Res 38 (5), 539-544. 2007.
 
[24]  Kimchi-Sarfaty, C., Marple, A. H., Shinar, S., Kimchi, A. M., Scavo, D., Roma, M. I., Kim, I. W., Jones, A., Arora, M., Gribar, J., Gurwitz, D. and Gottesman, M. M., “Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene,” Pharmacogenomics 8 (1), 29-39. 2007.
 
[25]  Khabour, O. F., Alzoubi, K. H., Al-Azzam, S. I. and Mhaidat, N. M., “Frequency of MDR1 single nucleotide polymorphisms in a Jordanian population, including a novel variant,” Genet Mol Res 12 (1), 801-808. 2013.
 
[26]  Marzolini, C., Paus, E., Buclin, T. and Kim, R. B., “Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance,” Clin Pharmacol Ther 75 (1), 13-33. 2004.
 
[27]  Gottesman, M. M., Hrycyna, C. A., Schoenlein, P. V., Germann, U. A. and Pastan, I., “Genetic analysis of the multidrug transporter,” Annu Rev Genet 29, 607-649. 1995.
 
[28]  Simon, T., Verstuyft, C., Mary-Krause, M., Quteineh, L., Drouet, E., Meneveau, N., Steg, P. G., Ferrieres, J., Danchin, N. and Becquemont, L., “Genetic determinants of response to clopidogrel and cardiovascular events,” N Engl J Med 360 (4), 363-375. 2009.
 
[29]  Shalia, K. K., Shah, V. K., Pawar, P., Divekar, S. S. and Payannavar, S., “Polymorphisms of MDR1, CYP2C19 and P2Y12 genes in Indian population: Effects on clopidogrel response,” Indian Heart J 65 (2), 158-167. 2013.
 
[30]  Su, J., Xu, J., Li, X., Zhang, H., Hu, J., Fang, R. and Chen, X., “ABCB1 C3435T polymorphism and response to clopidogrel treatment in coronary artery disease (CAD) patients: a meta-analysis,” PLoS One 7 (10), e46366. 2012.
 
[31]  Chowbay, B., Li, H., David, M., Cheung, Y. B. and Lee, E. J., “Meta-analysis of the influence of MDR1 C3435T polymorphism on digoxin pharmacokinetics and MDR1 gene expression,” Br J Clin Pharmacol 60 (2), 159-171. 2005.
 
[32]  Aarnoudse, A. J., Dieleman, J. P., Visser, L. E., Arp, P. P., van der Heiden, I. P., van Schaik, R. H., Molokhia, M., Hofman, A., Uitterlinden, A. G. and Stricker, B. H., “Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration,” Pharmacogenet Genomics 18 (4), 299-305. 2008.
 
[33]  Kimchi-Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., Ambudkar, S. V. and Gottesman, M. M., “A “silent” polymorphism in the MDR1 gene changes substrate specificity,” Science 315 (5811), 525-528. 2007.
 
[34]  MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk. “Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women,” Breast Cancer Res Treat 120 (3), 727-736. 2010.
 
[35]  Lü, H., Du, Z. Z., Wang, W., Wang, W., Zhao, W. L., Wang, Y., Hu, S. Y. and Chai, Y. H., “Relationship between genetic polymorphism of multidrug resistance 1 gene and the risk of childhood acute lymphocytic leukemia,” Zhonghua Er Ke Za Zhi 50 (9), 692-696. 2012.
 
[36]  Drozdzik, M., Bialecka, M., Mysliwiec, K., Honczarenko, K., Stankiewicz, J. and Sych, Z., “Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson's disease,” Pharmacogenetics 13 (5), 259-263. 2003.
 
[37]  Glas, J., Torok, H. P., Schiemann, U. and Folwaczny, C., “MDR1 gene polymorphism in ulcerative colitis,” Gastroenterology 126 (1), 367. 2004.
 
[38]  Kim, D. W., Kim, M., Lee, S. K., Kang, R. and Lee, S. Y., “Lack of association between C3435T nucleotide MDR1 genetic polymorphism and multidrug-resistant epilepsy,” Seizure 15 (5), 344-347. 2006.
 
[39]  Mihaljevic-Peles, A., Bozina, N., Sagud, M., Rojnic Kuzman, M. and Lovric, M., “MDR1 gene polymorphism: therapeutic response to paroxetine among patients with major depression,” Prog Neuropsychopharmacol Biol Psychiatry 32 (6), 1439-1444. 2008.
 
[40]  Khabour, O. F., Abdelhalim, E. S. and Abu-Wardeh, A., “Association between SOD2 T-9C and MTHFR C677T polymorphisms and longevity: a study in Jordanian population,” BMC Geriatr 9, 57. 2009.
 
[41]  Babiker, H. M., Schlebusch, C. M., Hassan, H. Y. and Jakobsson, M., “Genetic variation and population structure of Sudanese populations as indicated by 15 Identifiler sequence-tagged repeat (STR) loci,” Investig Genet 2 (1), 12. 2011.
 
[42]  Salem, A.-H., “Genotype and Allele Frequencies of MDR-1 in the Bahraini Population,” Arab Gulf Journal of Scientific Research 26 (4), 176-183. 2008.
 
[43]  Kassogue, Y., Dehbi, H., Nassereddine, S., Quachouh, M. and Nadifi, S., “Genotype variability and haplotype frequency of MDR1 (ABCB1) gene polymorphism in Morocco,” DNA Cell Biol 32 (10), 582-588. 2013.
 
[44]  Azarpira, N. and Aghdaie, M. H., “Frequency of C3435 MDR1 and A6896G CYP3A5 Single Nucleotide Polymorphism in an Iranian Population and Comparison with Other Ethnic Groups,” Medical Journal of the Islamic Republic of Iran 20 (3), 131-136. 2006.
 
[45]  Turgut, S., Turgut, G. and Atalay, E. O., “Genotype and allele frequency of human multidrug resistance (MDR1) gene C3435T polymorphism in Denizli province of Turkey,” Mol Biol Rep 33 (4), 295-300. 2006.
 
[46]  Bernal, M. L., Sinues, B., Fanlo, A. and Mayayo, E., “Frequency distribution of C3435T mutation in exon 26 of the MDR1 gene in a Spanish population,” Ther Drug Monit 25 (1), 107-111. 2003.
 
[47]  Anglicheau, D., Verstuyft, C., Laurent-Puig, P., Becquemont, L., Schlageter, M. H., Cassinat, B., Beaune, P., Legendre, C. and Thervet, E., “Association of the multidrug resistance-1 gene single-nucleotide polymorphisms with the tacrolimus dose requirements in renal transplant recipients,” J Am Soc Nephrol 14 (7), 1889-1896. 2003.
 
[48]  Ostrovsky, O., Nagler, A., Korostishevsky, M., Gazit, E. and Galski, H., “Genotype and allele frequencies of C3435T polymorphism of the MDR1 gene in various Jewish populations of Israel,” Ther Drug Monit 26 (6), 679-684. 2004.
 
[49]  Komoto, C., Nakamura, T., Sakaeda, T., Kroetz, D. L., Yamada, T., Omatsu, H., Koyama, T., Okamura, N., Miki, I., Tamura, T., Aoyama, N., Kasuga, M. and Okumura, K., “MDR1 haplotype frequencies in Japanese and Caucasian, and in Japanese patients with colorectal cancer and esophageal cancer,” Drug Metab Pharmacokinet 21 (2), 126-132. 2006.
 
Show Less References

Article

Effect of Combination between Methotrexate and Histone Deacetylase Inhibitors on Transplantable Tumor Model

1Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt


American Journal of Medicine Studies. 2014, 2(1), 12-18
DOI: 10.12691/ajms-2-1-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Ahmed M Kabel. Effect of Combination between Methotrexate and Histone Deacetylase Inhibitors on Transplantable Tumor Model. American Journal of Medicine Studies. 2014; 2(1):12-18. doi: 10.12691/ajms-2-1-2.

Correspondence to: Ahmed  M Kabel, Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt. Email: drakabel@gmail.com

Abstract

Solid Ehrlich carcinoma is an undifferentiated tumor used in tumor studies. Methotrexate is an antimetabolite used in treatment of cancer, autoimmune diseases and induction of abortion. Valproic acid is used as anticonvulsant and is under investigation for treatment of cancer. The aim of this work was to study the effect of each of methotrexate and valproic acid alone and in combination on solid Ehrlich tumor in mice. Fifty albino mice were divided into five equal groups: Control untreated group, solid Ehrlich carcinoma, solid Ehrlich carcinoma + methotrexate, solid Ehrlich carcinoma + valproic acid, solid Ehrlich carcinoma + methotrexate + valproic acid. Tumor volume, tissue catalase, glutathione reductase, malondialdehyde, cholesterol and tumor necrosis factor-α were determined. A part of the tumor was examined for histopathological and immunohistochemical study. Methotrexate or valproic acid alone or in combination induced significant increase in tissue catalase and glutathione reductase with significant decrease in tumor volume, tissue malondialdehyde, cholesterol and tumor necrosis factor-α and alleviated the histopathological changes with significant increase in p53 expression and apoptotic index compared to solid Ehrlich carcinoma group. The combination of methotrexate and valproic acid has a better effect than each of methotrexate or valproic acid alone against solid Ehrlich tumor in mice.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Silva LA, Nascimento KA, Maciel MC, Pinheiro MT, Sousa PR, Ferreira SC, et al: Sunflower Seed Oil-Enriched Product Can Inhibit Ehrlich Solid Tumor Growth in Mice. Chemotherapy 2006; 52: 91-94.
 
[[2]  Sakai M, Ferraz-de-Paula V, Pinheiro ML, Ribeiro A, Quinteiro-Filho WM, Rone MB, et al.: Translocator protein (18 kDa) mediates the pro-growth effects of diazepam on Ehrlich tumor cells in vivo. Euro J Pharmacol 2010; 626 (2-3): 131-138.
 
[[3]  Mol F, Mol BW, Ankum WM, van der Veen F, Hajenius PJ: Current evidence on surgery, systemic MTX and expectant management in the treatment of tubal ectopic pregnancy: a systematic review and meta-analysis. Hum Reprod Update 2008; 14 (4): 309-19.
 
[[4]  Kabel AM, Abdel-Rahman MN, El-Sisi AE, Haleem MS, Ezzat NM, El Rashidy MA: Effect of atorvastatin and methotrexate on solid Ehrlich tumor. Eur J Pharmacol. 2013; 713(1-3):47-53.
 
[[5]  Perucca E: Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 2002; 16 (10): 695-714.
 
Show More References
[6]  Sagot-Lerolle N, Lamine A, Chaix ML, Boufassa F, Aboulker JP, Costagliola D, et al.: Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS 2008; 22 (10): 1125-29.
 
[7]  Blaheta RA, Michaelis M, Driever PH, Jr JC: Evolving Anticancer Drug Valproic Acid: Insights into the Mechanism and Clinical Studies. Medicinal Research Reviews 2005; 25(4): 383-397.
 
[8]  Srikanth K, Debnath B, Nayak SS, Tarun JHA: Enhanced regression of tumors in mice with combined chemotherapy & immunotherapy. Ind J Pharmacol 2002; 34: 172-177.
 
[9]  Basselin M, Chang L, Chen M, Bell JM, Rapport S: Chronic administration of valproic acid reduces brain NMDA signaling via arachidonic acid in unanesthetized rats. Neurochem Res 2008; 33(11): 2229-2240.
 
[10]  Osman A, Sayed-Ahmed M, Khayyal M, El Merzebani M: Hyperthermic potentiation of cisplatin on solid Ehrlich carcinoma. Tumori 1993; 79: 268-72.
 
[11]  Attia M, Weiss DW: Immunology of spontaneous mammary carcinomas in mice infected with mammary tumor virus. Cancer Res 1966; 26:1787-800.
 
[12]  Higgins CP, Bachner R, McCallister J: Polymorpho-nuclear leukocyte species differences in the disposal of hydrogen peroxide (H2O2). Proc Soc Exp Biol Med 1978; 158: 478-481.
 
[13]  Uchiyama M, Mihara M: Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 1979; 86: 271-278.
 
[14]  Manso C, Wroblewski F: Glutathione reductase activity in blood and body Fluids. J Clin Investigation 1958; 37: 214-218.
 
[15]  Richmond W: Preparation and properties of a cholesterol oxidase from Nocardia sp and its application to the enzymatic assay of total cholesterol in serum. Clin Chem 1973; 19 (12): 1350-1356.
 
[16]  Luster AD, Rothenberg ME: Role of the monocyte chemoattractant preotein ane eotaxin subfamily chemokines in allergic inflammation. J Leukoc Biol 1997; 62:620.
 
[17]  Sarraf CE, Bowen ID: Kinetic studies on murine sarcoma and an analysis of apoptosis. Br J Cancer 1988; 54: 989-98.
 
[18]  Manne U, Weiss HL, Myers RB, Danner OK: Nuclear accumulation of p53 in colorectal adenocarcinomas: prognostic importance differs with race and location of tumor. Cancer 1998; 83: 2456-67.
 
[19]  Ozaslan M, Karagoz ID, Kilic IH, Guldur ME: Ehrlich ascites carcinoma. Afr J Biotechnol 2011; 10(13): 2375-2378.
 
[20]  Segura JA, Ruiz-Bellido MA, Arenas M, Lobo C, Marquez J, Alonso FJ: Ehrlich Ascites Tumor Cells Expressing Anti-Sense Glutaminase RNA Lose Their Capacity to Evade the Mouse Immune System. Int J Cancer 2001; 91: 379-384.
 
[21]  Badr El-Din NK: Protective role of sanumgerman against γ-irradiation–induced oxidative stress in Ehrlich carcinoma-bearing mice. Nutrition Research 2004; 24: 271-291.
 
[22]  Zahran MA, Salem TA, Samaka RM, Agwa HS, Awad AR: Design, synthesis and antitumor evaluation of novel thalidomide dithiocarbamate and dithioate analogs against Ehrlich ascites carcinoma-induced solid tumor in Swiss albino mice. Bioorg Med Chem 2008; 16(22): 9708-9718.
 
[23]  Matés JM, Segura JA, Alonso FJ, Márquez J: Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol. 2008; 82(5): 273-99.
 
[24]  Sarkar S, Yadav P, Bhatnagar D: Effect of cadmium on glutathione metabolism and glucose 6-phosphate dehydrogenase in rat tissues: role of vitamin E and selenium. Trace Elem Electrol 1998; 15: 101-105.
 
[25]  Takahashi HK, Nishibori M: The antitumor activities of statins. Curr Oncol 2007; 14 (6): 246-247.
 
[26]  Luo JL, Maeda S, Hsu LC, Yagita H, Karin M: Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNF- α to TRAIL-mediated tumor regression. Cancer Cell 2004; 6: 297-305.
 
[27]  Waterston A, Bower M: TNF and cancer: good or bad?. Cancer Therapy 2004; 2:131-148.
 
[28]  Ravi R, Zhiquan Z, Lynn MC, Mary D,Benkovic SJ, Hammes G: Interaction of dihydrofolate reductase with MTX: Ensemble and single-molecule kinetics. Proceedings of the National Academy of Sciences 2002; 99 (21): 13481-6.
 
[29]  Basak C, Andeerea KL, Qing W, Rima R: Methotrexate-induced apoptosis is enhanced by altered expression of methylene tetrahydrofolate reductase. Anti- Cancer Drugs 2009; 20: 787-793.
 
[30]  Winter-Vann AM, Kamen BA, Bergo MO, Young SG, Melenyk S, James SJ, et al.: Targeting Ras signaling through inhibition of carboxyl methylation: an unexpected property of methotrexate. PNAS 2003; 100: 6529-6234.
 
[31]  Sung JY, Hong JH, Kang HS, Choi I, Lim SD, Lee JK, et al.: Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology 2000; 47: 35-44.
 
[32]  Cutolo M, Sulli A, Pizzorni C, Seriolo B: Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis 2001; 60: 729-735.
 
[33]  Schnyder B, Drexel J, Sauter C: Influence of cyclophosphamide, methotrexate, and 5-fluorouracil on serum cholesterol (Meeting abstract). ASCO Annual Meeting 1996; No. 312.
 
[34]  Glozak MA, Seto E: Histone deacetylases and cancer. Oncogene 2007; 26: 5420-5432.
 
[35]  Cinatl J, Kotchetkov R, Blaheta R, Driever PH, Vogel JU, Cinatl J: Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: Enhancement by combination with interferon-alpha. Int J Oncol 2002; 20:97-106.
 
[36]  Fourcade S, Ruiz M, Guilera C, Hahnen E, Brichta L, Naudi A, et al.: Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Human Molecular Genetics 2010; 19 (10): 2005-2014.
 
[37]  Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, et al.: Histone Hyperacetylation Is Associated with Amelioration of Experimental Colitis in Mice. J Immunol 2006; 176:5015-5022.
 
[38]  Zhang Z, Zhang ZY, Fauser U, Schluesener HJ: Valproic acid attenuates inflammation in experimental autoimmune neuritis. Cell Mol Life Sci 2008; 65: 4055-4065.
 
[39]  Zgouras D, Becker U, Loitsch S, Stein J: Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem Biophys Res Commun 2004;316: 693-697.
 
[40]  Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS: Histone deacetylase is a target of valproic acidmediated cellular differentiation. Cancer Res 2004;64: 1079-1086.
 
[41]  Beger RD, Hansen DK, Schnackenberg LK, Cross BM, Fatollahi J, Lagunero FT, et al.: Single valproic acid treatment inhibits glycogen and RNA ribose turnover while disrupting glucose-derived cholesterol synthesis in liver as revealed by the [U-13C6]-d-glucose tracer in mice. Metabolomics 2009; 5(3): 336-345.
 
[42]  Pipalia NH, Cosner C, Huang A, Chatterjee A, Bourbon P, Farley N, et al.: Histone deacetylase inhibitor treatment dramatically reduces cholesterol accumulation in Niemann-Pick type C1 mutant human fibroblasts. PNAS 2011; 108(14): 5620-5625.
 
Show Less References

Article

Immunogenicity of Leishmania Donavani Centrin-3 Vaccines

1Department of Medical Laboratory, Faculty of Medical Technology, Sert University, Libya

2College of Arts and Science, School of Science & Technology, Nottingham Trent University


American Journal of Medicine Studies. 2014, 2(1), 1-11
DOI: 10.12691/ajms-2-1-1
Copyright © 2013 Science and Education Publishing

Cite this paper:
Fathiya AA Steal, Selman A Ali. Immunogenicity of Leishmania Donavani Centrin-3 Vaccines. American Journal of Medicine Studies. 2014; 2(1):1-11. doi: 10.12691/ajms-2-1-1.

Correspondence to: Selman  A Ali, College of Arts and Science, School of Science & Technology, Nottingham Trent University. Email: selman.ali@ntu.ac.uk

Abstract

Leishmaniasis is a parasitic protozoal disease affecting humans and animals with phlebotomine sand flies as intermediate vectors. There is no effective vaccine in use against this parasite and production relies on finding potent immunogenic antigens with long lasting memory response. As part of searching for new Leishmania antigens of a potential vaccine application, the immunogenicity of L. donovani centrin-3 (Ldcen-3) was investigated in a Balb/c model. Ldcen-3 is a calcium binding protein that has been shown to be involved in duplication and segregation of the centrosome in higher and lower eukaryotes. The Ldcen-3 gene was cloned in various vectors and coated on gold particles for gene gun immunisation. Significant protection was induced by immunisation with 1μg DNA of pcDNA3.1-Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 constructs. Protection against challenge with live parasite was vector dependent where better protection was induced by pCRT7/CT-TOPO-Ldcen-3. Splenocytes from Balb/c mice immunised with pcDNA3.1-Ldcen-3 or pCRT7/CT-TOPO-Ldcen-3 had a potent CTL response against DC targets loaded with or tumour cells transfected with Ldcen-3 plasmid construct.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Rodriguez-Cortes, A., Ojeda, A., Lopez-Fuertes, L., Timon, M., Altet, L., Solano-Gallego, L. (2007). Vaccination with plasmid DNA encoding KMPII, TRYP, LACK and GP63 does not protect dogs against Leishmania infantum experimental challenge. Vaccine, 25(46), 7962-7971.
 
[[2]  Selvapandiyan, A., Duncan, R., Debrabant, A., Lee, N., Sreenivas, G., Salotra, P. (2006). Genetically modified live attenuated parasites as vaccines for leishmaniasis. Indian J Med Res, 123(3), 455-466.
 
[[3]  Samant, M., Gupta, R., Kumari, S., Misra, P., Khare, P., Kumar, P.,Kushawaha, K, P., Sahasrabuddhe, A, A., Dube, A, A. (2009). Immunization with the DNA-Encoding N-Terminal Domain of Proteophosphoglycan of Leishmania donovani Generates Th1-Type Immunoprotective Response against Experimental Visceral Leishmaniasis. J of Immunol. 183: 470-479.
 
[[4]  Baron, S. F., Franklund, C. V., & Hylemon, P. B. (1991). Cloning, sequencing, and expression of the gene coding for bile acid 7 alpha-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J Bacteriol, 173(15), 4558-4569.
 
[[5]  Errabolu, R., Sanders, M. A., & Salisbury, J. L. (1994). Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. J Cell Sci, 107 (1): 9-16.
 
Show More References
[6]  Judelson, H.S., Shrivastava, J. & Manson, J. (2012). Decay of Genes Encoding the Oomycete Flagellar Proteome in the Downy Mildew Hyaloperonospora arabidopsidis. PLoS ONE, 7(10), e 47624.
 
[7]  Selvapandiyan, A., Kumar, P., Morris, J. C., Salisbury, J. L., Wang, C. C., & Nakhasi, H. L. (2007). Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell, 18(9), 3290-3301.
 
[8]  Koblenz, B., Schoppmeier, J., Grunow, A., & Lechtreck, K. F. (2003). Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J Cell Sci, 116(13), 2635-2646.
 
[9]  Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J., & Koll, F. (2005). Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr Biol, 15(23), 2097-2106.
 
[10]  Gavet, O., Alvarez, C., Gaspar, P., & Bornens, M. (2003). Centrin4p, a novel mammalian centrin specifically expressed in ciliated cells. Mol Biol Cell, 14(5), 1818-1834.
 
[11]  Khalfan, W., Ivanovska, I., & Rose, M. D. (2000). Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes. Genetics, 155(4), 1543-1559.
 
[12]  Bhattacharya, D., Steinkotter, J., & Melkonian, M. (1993). Molecular cloning and evolutionary analysis of the calcium-modulated contractile protein, centrin, in green algae and land plants. Plant Mol Biol, 23(6), 1243-1254.
 
[13]  Selvapandiyan, A., Duncan, R., Debrabant, A., Bertholet, S., Sreenivas, G., Negi, N. S. (2001). Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J Biol Chem, 276(46), 43253-43261.
 
[14]  Selvapandiyan, A., Dey, R., Nylen, S., Duncan, R., Sacks, D., Nakhasi H, L. (2009). Intracellular Replication-Deficient Leishmania donovani Induces Long Lasting Protective Immunity against Visceral Leishmaniasis Journal of Immunology. (183): 1813-1820.
 
[15]  Antoniazi, S., Lima, H. C., & Cruz, A. K. (2000). Overexpression of miniexon gene decreases virulence of Leishmania major in BALB/c mice in vivo. Mol Biochem Parasitol, 107(1), 57-69.
 
[16]  Encke, J., zu Putlitz, J., & Wands, J. R. (1999). DNA vaccines. Intervirology, 42(2-3), 117-124.
 
[17]  Ali, S. A., Rezvan, H., McArdle, S. E., Khodadadi, A., Asteal, F. A., & Rees, R. C. (2009). CTL responses to Leishmania mexicana gp63-cDNA vaccine in a murine model. Parasite Immunol, 31(7), 373-383.
 
[18]  Ivory, C., & Chadee, K. (2004). DNA vaccines: designing strategies against parasitic infections. Genet Vaccines Ther, 2(1), 17.
 
[19]  Ahmed, S. B., Bahloul, C., Robbana, C., Askri, S., & Dellagi, K. (2004). A comparative evaluation of different DNA vaccine candidates against experimental murine leishmaniasis due to L. major. Vaccine, 22(13-14), 1631-1639.
 
[20]  Dumonteil, E., Maria Jesus, R. S., Javier, E. O., & Mariadel Rosario, G. M. (2003). DNA vaccines induce partial protection against Leishmania mexicana. Vaccine, 21(17-18), 2161-2168.
 
[21]  Kedzierski, L. (2010). Leishmaniasis Vaccine: Where are we today.Journal of Global Infectious Diseases 2(2): 177-185
 
[22]  Spier, R. E. (1996). International meeting on the nucleic acid vaccines for the prevention of infectious disease and regulating nucleic acid (DNA) vaccines. Natcher Conference Center NIH, Bethesda, MD 5-8 February, 1996. Vaccine, 14(13), 1285-1288.
 
[23]  Giri, M., Ugen, K. E., Weiner D. B., (2004). DNA Vaccines against Human Immunodeficiency Virus Type 1 in the Past Decade. Clinical Microbiology. 2(17), 370-389.
 
[24]  Selvapandiyan, A., Debrabant, A., Duncan, R., Muller, J., Salotra, P., Sreenivas, G. (2004). Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. J Biol Chem, 279(24), 25703-25710.
 
[25]  Garmory, H. S., Brown, K. A., & Titball, R. W. (2003). DNA vaccines: improving expression of antigens. Genet Vaccines Ther, 1(1), 2.
 
[26]  Ghosh, F., Hansson, L. J., Bynke, G., & Bekassy, A. N. (2002). Intravitreal sustained-release ganciclovir implants for severe bilateral cytomegalovirus retinitis after stem cell transplantation. Acta Ophthalmol Scand, 80(1), 101-104.
 
[27]  Mendez, S., Belkaid, Y., Seder, R. A., & Sacks, D. (2002). Optimization of DNA vaccination against cutaneous leishmaniasis. Vaccine, 20 (31-32), 3702-3708.
 
[28]  Conry, R. M., LoBuglio, A. F., & Curiel, D. T. (1996). Polynucleotide-mediated immunization therapy of cancer. Semin Oncol, 23(1), 135-147.
 
[29]  Sarobe, P., Huarte, E., Lasarte, J. J., Borrلs-Cuesta, F. (2004). Carcinoembryonic Antigen as a Target to Induce Anti-Tumor Immune Responses. Current Cancer Drug Targets, 4, 443-454.
 
[30]  Xu, D., & Liew, F. Y. (1995). Protection against leishmaniasis by injection of DNA encoding a major surface glycoprotein, gp63, of L. major. Immunology, 84(2), 173-176.
 
[31]  Trinchieri, G. (1995). Interleukin-12 and interferon-gamma. Do they always go together? Am J Pathol, 147(6), 1534-1538.
 
[32]  Barbi, J., Brombacher, F., Satoskar A. R., (2008). T cells from Leishmania major-susceptible BALB/c mice have a defect in efficiently up-regulating CXCR3 upon activation. J Immunol, 181(7): 4613-4620.
 
[33]  Horspool, J. H., Perrin, P. J., Woodcock, J. B., Cox, J. H., King, C. L., June, C. H., (1998). Nucleic acid vaccine-induced immune responses require CD28 costimulation and are regulated by CTLA4. J Immunol, 160(6), 2706-2714.
 
[34]  Morcock, D. R., Sowder, R. C., 2nd, & Casas-Finet, J. R. (2000). Role of the histidine residues of visna virus nucleocapsid protein in metal ion and DNA binding. FEBS Lett, 476(3), 190-193.
 
[35]  Jacobsen L. B., Calvin S. A., Wang, J. (2007). Transfection of PCR fragments into human tumor cells using FuGENE HD Transfection Reagent. Cell Biology,Nature Methods Applications, pp. 1-5.
 
[36]  Qin, H., Nehete, P. N., He, H., Nehete, B., Buchl, S., Cha, S. C. (2010). Prime-boost vaccination using chemokine-fused gp120 DNA and HIV envelope peptides activates both immediate and long-term memory cellular responses in rhesus macaques. J Biomed Biotechnol, 860160.
 
[37]  Gurunathan, S., Irvine, K. R., Wu, C. Y., Cohen, J. I., Thomas, E., Prussin, C., (1998). CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol, 161(9), 4563-4571.
 
[38]  Carter, K. C., Henriquez, F. L., Campbell, S. A., Roberts, C. W., Nok, A., Mullen, A. B.,. (2007). DNA vaccination against the parasite enzyme gamma-glutamylcysteine synthetase confers protection against Leishmania donovani infection. Vaccine, 25(22), 4502-4509.
 
Show Less References
comments powered by Disqus