American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2018, 6(3), 67-72
DOI: 10.12691/ajmr-6-3-1
Open AccessArticle

Physico-chemical Characterization of a Pink Red-like Pigments Produced by Five New Bacterial Soil Strains Identified as Streptomyces coelicoflavus

Mouslim Assia1, Ayoubi Hasnaa1, Moujabbir Sara1, Mouslim Jamal2 and Menggad Mohammed1,

1Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Avenue Cdt Driss El Harti, PB 7955 Sidi Othman Casablanca (Morocco)

2Laboratory of Microbiology, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Avenue Cdt Driss El Harti, PB 7955 Sidi Othman Casablanca (Morocco)

Pub. Date: June 05, 2018

Cite this paper:
Mouslim Assia, Ayoubi Hasnaa, Moujabbir Sara, Mouslim Jamal and Menggad Mohammed. Physico-chemical Characterization of a Pink Red-like Pigments Produced by Five New Bacterial Soil Strains Identified as Streptomyces coelicoflavus. American Journal of Microbiological Research. 2018; 6(3):67-72. doi: 10.12691/ajmr-6-3-1


Five new strains MFB11, MFB20, MFB21, MFB23 and MFB24 of actinomycetes showed an intracellular hydrophobic pink red-like pigment production. These pigments present similar physico-chemical characteristics with anthracycline antibiotics of prodigiosin family. Nevertheless, negative antibacterial assay, Thin-layer chromatography (TLC) and interaction with organic solvents analysis of these pigments revealed their difference from known anthracycline antibiotics. Morphological, biochemical and gene coding 16S RNA sequence analysis allowed identification of the producer strains as Streptomyces coelicoflavus; known to produce important aminoglycoside antibiotics and other bioactive compounds but not anthracyclines red-like pigments. The identification of the five strains and physico-chemical properties of the produced pink red-like pigments are presented in this report.

S. coelicoflavus red pigment anthracycline UV-Vis spectra TLC hydrophobe thermosensitive photosensitive

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Chin Y., Balunas M. J., Chai H. B. and Kinghorn A. D., Drug discovery from natural sources. AAPS Journal, 2006. 8(2): E239-E253.
[2]  Newman D. J. and Cragg G. M., Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 2012. 75: 311-335.
[3]  Baltz R. H., Miao V. and Wrigley S. K.., Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep., 2005. 22: 717-41.
[4]  Baltz R. H., Antimicrobials from actinomycetes. Back to the future. Microbe, 2007. 2: 125-131.
[5]  Raja A. and Prabakarana P., Actinomycetes and drug-an overview. Science Alert, 2011. 1: 72-84.
[6]  Vanĕk Z., Tax J., Komersová I., Sedmera P. and Vokoun J., Anthracyclines. Folia Microbiol., 1977. 22(2): 139-159.
[7]  Williams R. P., Green J. A. and Rappoport D. A., Studies on pigmentation of Serratia marcescens. I. spectral and paper chromatographic properties of Prodigiosin. J Bacteriol., 1956. 71(1): 115-120.
[8]  Wright, L. F. and Hopwood, D. A., Actinorhodin is a chromosomally determined antibiotic in Streptomyces coelicolor A3(2). Journal of General Microbiology, 1976. 96: 289-297.
[9]  Rudd B. A. M. and Hopwood D. A., A Pigmented Mycelial Antibiotic in Streptomyces coelicolor : Control by a Chromosomal Gene Cluster. Journal of General Microbiology, 1980. 119: 333-340.
[10]  Arcamone F., Antitumor anthracyclines: recent developments. Med. Res. Rev., 1984. 4 (2): 153-188.
[11]  Filipowicz B., Rubromycin, a new antibiotic. Wiadomosci Chem., 1953. 7: 525. (In Polish).
[12]  Hayakawa Y., Kawakami K., Seto H. and Furihata K.., Structure of a new antibiotic, roseophilin. Tetrahedron Lett., 1992. 33: 2701-2704.
[13]  Kawasaki T., Sakurai F. and Hayakawa Y., A prodigiosin from the roseophilin producer Streptomyces griseoviridis. J. Nat. Prod., 2008. 71: 1265-1267.
[14]  Ayoubi H., Mouslim A., Moujabbir S., Amine S., Azougar I., Mouslim J. and Menggad M., Isolation and phenotypic characterization of actinomycetes from Rabat neighborhood soil and their potential to produce bioactive compounds. African Journal of Microbiology Research, 20018. 12(8): 186-191.
[15]  Shirling E. B. and Gottlieb D.,. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol., 1966. 16: 313-340.
[16]  Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A. and Sackin, M. J., Numerical classification of Streptomyces and related genera. J Gen Microbiol., 1983. 129: 1743-1813.
[17]  Lane, D.J. (1991). 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Stackebrandt, E., and Goodfellow, M., eds., John Wiley and Sons, New York, NY, pp. 115-175.
[18]  Gause G. F., Preobrazhenskaya T. P., Sveshnikova M. A., Terekhova L. P. and Maximova T. S. (1983). A guide for the determination of actinomycetes. Genera Streptomyces, Streptoverticillium, and Chainia. Nauka, Moscow, URSS. In Validation List no. 22. Int. J. Syst. Bacteriol.,. 1986. 36: 573-576.
[19]  Sugiyama Y., Oya A., Kudo T., Hirota A., Surugapyrone A from Streptomyces coelicoflavus strain USF-6280 as a new DPPH radical-scavenger. J Antibiot., 2010. 63: 365-369.
[20]  Geng P., Bai G., Shi Q., Zhang L., Gao Z. and Zhang, Q., Taxonomy of the Streptomyces strain ZG0656 that produces acarviostatin alpha-amylase inhibitors and analysis of their effects on blood glucose levels in mammalian systems. J Appl Microbiol., 2009. 106: 525-533.
[21]  Sathish Kumar S. R. and Bhaskara Rao K. V., Efficacy of Alpha Glucosidase Inhibitor from Marine Actinobacterium in the Control of Postprandial Hyperglycaemia in treptozotocin (STZ) Induced Diabetic Male Albino Wister Rats. Iranian Journal of Pharmaceutical Research, 2018. 17 (1): 202-214.
[22]  Sunita H., Deovrat B., Nandita N., Tukaram K. and Avinash U., Rhodomycin analogues from Streptomyces purpurascens: isolation, characterization and biological activities. SpringerPlus, 2013. 2: 93 (13p).
[23]  Meriwether W. D. and Bachur N. R., Inhibition of DNA and RNA Metabolism by Daunorubicin and Adriamycin in L1210 Mouse Leukemia. Cancer Research, 1972. 32: 1137-1142.
[24]  Bundale S., Begde D., Pillai D., Gangwani K., Nashikkar N., Kadam T. and Upadhyay A., Novel aromatic polyketides from soil Streptomyces spp.: purification, characterization and bioactivity studies. World J Microbiol Biotechnol, 2018. 34(5): 67.
[25]  Cox G., Koteva K.. and Wright G. D., An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 2014. 69(7): 1844-1855.
[26]  Darshan N. and Manonmani H. K.., Prodigiosin and its potential applications. J Food Sci Technol., 2015. 52(9): 5393-5407.
[27]  Tsao S-W., Rudd B. A. M., He X-G., Chang C-J. and Floss H. G., Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiot., 1985. 38(1): 128-131.
[28]  Chauhan R., Choudhuri A. and Abraham J., Evaluation of antibacterial, cytotoxicity, and dyeing properties of prodigiosin produced by Serratia marcescens strain JAR8. Asian J Pharm Clin Res., 2017. 10(8): 279-283.
[29]  Vora J. U. a, Jain N. K. and Modi H. A., Extraction, Characterization and Application studies of red pigment of halophile Serratia marcescens KH1R KM035849 isolated from Kharaghoda soil. Int. J. Pure App. Biosci., 2014. 2(6): 160-168.
[30]  Andreyeva I. N. and Ogorodnikova T. I., Pigmentation of Serratia marcescens and spectral properties of prodigiosin. Microbiol., 2015. 84(1):28-33.
[31]  Perez-Soler R. and Priebe W., Anthracycline antibiotics with high liposome entrapment: structural features and biological activity. Cancer Res., 1990. 50(14): 4260-6.
[32]  Zhang Z., Gong Y-K., Zhou Q., Hu Y. , Ma H-M., Chen Y-S., Igarashi Y., Pan L. and Tang G-Li., Hydroxyl regioisomerization of anthracycline catalyzed by a four-enzyme cascade. PNAS, 2017. 114(7): 1554-1559.
[33]  Gallois L., Fiallo M., Laigle A., Priebe W. and Garnier-Suillerot A., The overall partitioning of anthracyclines into phosphatidyl-containing model membranes depends neither on the drug charge nor the presence of anionic phospholipids. Eur. J. Biochem., 1996. 241: 879-887.
[34]  Sánchez-Quiles I. and Nájera-Pérez M.D., Espuny-Miró A., Titos-Arcos J. C., Review of the Stability of Photosensitive Medications. Farm Hosp., 2001. 35(4): 204-215.