American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2016, 4(4), 101-121
DOI: 10.12691/ajmr-4-4-2
Open AccessArticle

In Silico Prediction of a Novel Universal Multi-epitope Peptide Vaccine in the Whole Spike Glycoprotein of MERS CoV

Marwan Mustafa Badawi1, , Maryam Atif SalahEldin2, Marwa Mustafa Suliman3, Samah Awad AbduRahim2, Alaa Abd elghafoor Mohammed1, Alaa Salah Aldein SidAhmed1, Marwa Mohamed Osman1 and Mohamed Ahmed Salih1

1Department of Biotechnology, Africa city of Technology- Khartoum, Sudan

2Department of medical microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum-Khartoum, Sudan

3Sudan Armed forces hospital- Khartoum, Sudan

Pub. Date: July 14, 2016

Cite this paper:
Marwan Mustafa Badawi, Maryam Atif SalahEldin, Marwa Mustafa Suliman, Samah Awad AbduRahim, Alaa Abd elghafoor Mohammed, Alaa Salah Aldein SidAhmed, Marwa Mohamed Osman and Mohamed Ahmed Salih. In Silico Prediction of a Novel Universal Multi-epitope Peptide Vaccine in the Whole Spike Glycoprotein of MERS CoV. American Journal of Microbiological Research. 2016; 4(4):101-121. doi: 10.12691/ajmr-4-4-2

Abstract

Middle East Respiratory Syndrome (MERS) is a new viral emergent human disease caused by a novel strain of Coronavirus. First known case of MERS occurred in Jordan in April 2012, by December 2015, the disease had already struck 1,621 persons of whom 584 died. Despite of the high mortality rate of the infection, there are no clinically approved vaccines or antiviral drugs, thus, the aim of this study is to analyze Spike glycoprotein strains using in silico approaches looking for conservancy, which is further studied to predict all potential epitopes that can be used after in vitro and in vivo confirmation as a therapeutic peptide vaccine. Total of 255 Spike glycoprotein variants retrieved from NCBI database were aligned, to select the conserved regions for epitopes prediction. By means of IEDB analysis resource B and T cell epitopes were predicted and population coverage was calculated. Two epitopes were proposed for international therapeutic peptide vaccine for B cell (GTPPQVY and LTPRSVRSVP). Regarding T cell, FSFGVTQEY epitope was highly recommended as therapeutic peptide vaccine to interact with MHC class I along with eight other epitopes that showed good population coverage against the whole world population. Four epitopes showed high affinity to interact with MHC class II alleles (FNLTLLEPV, FAAIPFAQS, SFAAIPFAQ and FYVYKLQPL) with excellent population coverage throughout the world and Saudi Arabia. Herd immunity protocols can be conducted in countries with low population coverage to minimize the active transmission of the virus especially among people contacting camels and other groups at risk.

Keywords:
MERS CoV Peptide vaccine Immune Epitope Database IEDB Epitopes Herd immunity and Vaccine

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV). http://www.who.int/mediacentre/factsheets/mers-cov/en/.
 
[2]  Memish ZA, Cotten M, Watson SJ, Kellam P, Zumla A, Alhakeem RF, etal. Community Case Clusters of Middle East Respiratory Syndrome Coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: A Descriptive Genomic study. Int J Infect Dis. 2014; 23: 63-68.
 
[3]  Cotten M, Watson SJ, Zumla AI, Makhdoom HQ, Palser AL, Ong SH, etal. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. MBio. 2014; 5(1):e01062-13.
 
[4]  Chastel C. Middle East respiratory syndrome (MERS): bats or dromedary, which of them is responsible?. Bull Soc Pathol Exot. 2014; 107(2):69-73.
 
[5]  Al-Dorzi HM, Alsolamy S, Arabi YM. Critically ill patients with Middle East respiratory syndrome coronavirus infection. Crit Care. 2016; 20(1): 65.
 
[6]  Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS). http://www.cdc.gov/coronavirus/mers/about/index.htm.
 
[7]  World Health Organization Regional Office for the Eastern Mediterranean. New coronavirus identified in two patients in the EMR. Weekly Epidemiologi-cal Monitor. 2012; 5(39) http://www.emro.who.int/images/stories/csr/documents/epi___issue_no__39.coronavirus.pdf.
 
[8]  World Health Organization.Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia. http://www.who.int/csr/don/4-december-2015-mers-saudi-arabia/en/.
 
[9]  Malczyk AH, Kupke A, Prüfer S, Scheuplein VA, Hutzler S, Kreuz D etal. A Highly Immunogenic and Protective Middle East Respiratory Syndrome Coronavirus Vaccine Based on a Recombinant Measles Virus Vaccine Platform. J Virol. 2015; 89(22):11654-67.
 
[10]  Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, Menachery VD, etal. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci. 2013; 110(40):16157-62.
 
[11]  Public Health England. Risk assessment of Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.gov.uk/government/uploads/system/uploads/attachment_data 505701/MERS-COV_RA_Mar2016_240216_RP__3_.pdf.
 
[12]  Song F, Fux R, Provacia LB, Volz A, Eickmann M, Becker S, etal. Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. J Virol. 2013;87(21):11950-4.
 
[13]  Memish ZA, Cotten M, Meyer B, Watson SJ, Alsahafi AJ, Al Rabeeah AA, etal. Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013. Emerg Infect Dis. 2014 Jun; 20(6):1012-5.
 
[14]  Reusken C, Messadi L, Feyisa A, Ularamu H, Godeke G, Danmarwa A, etal. Geographic distribution of MERS coronavirus among dromedary camels, Africa .Emerging Infectious Diseases. 2014; 20(8):1370-1374.
 
[15]  Levinson W. Medical Microbiology and Immunology (examination and board review). 8th edition. McGraw-Hill, San Francisco, 2004; p268.
 
[16]  van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, etal. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio. 2012; 3(6):e00473-12.
 
[17]  Qian Z, Dominguez SR, Holmes KV. Role of the Spike Glycoprotein of Human Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Virus Entry and Syncytia Formation. PLoS One. 2013; 8(10): e76469.
 
[18]  Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A, etal. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013 May; 87(10):5502-11.
 
[19]  Shi J, Zhang J, Li S, Sun J, Teng Y, Wu M, etal. Epitope-Based Vaccine Target Screening against Highly Pathogenic MERS-CoV: An In Silico Approach Applied to Emerging Infectious Diseases. PLoS One. 2015; 10(12): e0144475.
 
[20]  de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, etal. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87(14):7790-2.
 
[21]  World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) .http:// www.who.int/mediacentre/factsheets/mers-cov/en/.
 
[22]  Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol. 2013 D; 11(12):836-48.
 
[23]  Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, etal. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol. 2014; 88(14):7796-805.
 
[24]  Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, etal. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 2015; 6:7712.
 
[25]  Rappuoli R. Reverse vaccinology. Curr Opin Microbiol. 2000; 3 (5):445-50.
 
[26]  Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov. 2007; 6(5):404-14.
 
[27]  Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41:95-98.
 
[28]  Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A, Peters B. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2014 Oct 9. pii: gku938. [Epub ahead of print] PubMed PMID: 25300482.
 
[29]  Anayet Hasan, Mehjabeen Hossain and Md. Jibran Alam. A Computational Assay to Design an Epitope-Based Peptide Vaccine Against Saint Louis Encephalitis Virus. Bioinformatics and Biology Insights 2013:7 347-355.
 
[30]  Jens Erik Pontoppidan Larsen, Ole Lund and Morten Nielsen. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006; 2: 2.
 
[31]  Emini EA, Hughes JV, Perlow DS, Boger J. 1985. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836-839.
 
[32]  Kolaskar AS, Tongaonkar PC. 1990. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett276:172-174.
 
[33]  Parker JM, Guo D, Hodges RS. 1986. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425-5432.PMID: 2430611.
 
[34]  Osman et al. HLA-A, -B, -C, -DRB1, and -DQB1 allele Lineages and Haplotype Frequencies among Saudis. Immunology and Immunogenetics Insights 2014:6 1-6.
 
[35]  Hajeer AH, Sawidan FA, Bohlega S, et al. HLA class I and class II polymorphisms in Saudi patients with myasthenia gravis. Int J Immunogenet. 2009;36: 169-172.
 
[36]  Hajeer AH, Al Balwi MA, Aytül Uyar F, et al. HLA-A, -B, -C, -DBR1 and -DQB1 allele and haplotype frequencies in Saudis using next generation sequencing technique. Tissue Antigens. 2013;82:2520258.
 
[37]  Gonzalez-Galarza FF, Christmas S, Middleton D, Jones AR. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations. Nucleic Acids Res. 2011;39:D9130D919.
 
[38]  Valluri V, Mustafa M, Santhosh A, et al. Frequencies of HLA-A, HLA-B, HLA-DR, and HLA-DQ phenotypes in the United Arab Emirates population. Tissue Antigens. 2005;66:107-113.
 
[39]  Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE, Nielsen M, Peters B. 2012. Immune epitope database analysis resource. NAR.
 
[40]  Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O. 2003. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007-1017.
 
[41]  Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, and Nielsen M. 2008. NetMHC-3.0: Accurate web accessible predictions of Human, Mouse, and Monkey MHC class I affinities for peptides of length 8-11. NAR 36:W509-512.
 
[42]  Peters B, Sette A. 2005. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6:132.
 
[43]  Sidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, Peters B. 2008. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res 4:2.
 
[44]  Kim Y, Ponomarenko J, Zhu Z, et al. Immune epitope database analysis resource. Nucleic Acids Research. 2012;40(Web Server issue):W525-W530.
 
[45]  Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 4(4):e1000048.
 
[46]  Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics. 11:568.
 
[47]  Pratik Narain Srivastava, Richa Jain, Shyam Dhar Dubey, Sharad Bhatnagar, Nabeel Ahmad. Prediction of Epitope-Based Peptides for Vaccine Development from Coat Proteins GP2 and VP24 of Ebola Virus Using Immunoinformatics, International Journal of Peptide Research and Therapeutics (2016) 22:119-133.
 
[48]  Zhang, Q., Wang, P., Kim, Y., Haste-Andersen, P., Beaver, J., Bourne, P. E. et al. (2008). Immune epitope database analysis resource (IEDB-AR).Nucleic Acids Research36(Web Server issue), W513-W518.
 
[49]  Bui HH,Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006 Mar 17;7:153.
 
[50]  The Phyre2 web portal for protein modeling, prediction and analysis Kelley LA et al. Nature Protocols 10, 845-858 (2015).
 
[51]  UCSF Chimera--a visualization system for exploratory research and analysis. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. J Comput Chem. 2004 Oct;25(13):1605-12.
 
[52]  Bachler, B.C.; Humbert, M.; Palikuqi, B.; Siddappa, N.B.; Lakhashe, S.K.; Rasmussen, R.A.; Ruprecht, R.M. Novel biopanning strategy to identify epitopes associated with vaccine protection. J. Virol. 2013, 87, 4403-4416.
 
[53]  Perrie, Y.; Kirby, D.; Bramwell, V.W.; Mohammed, A.R. Recent developments in particulate-based vaccines. Recent Pat. Drug Deliv. Formul. 2007, 1, 117-129.
 
[54]  Black, M.; Trent, A.; Tirrell, M.; Olive, C. Advances in the design and delivery of peptide subunit vaccines with a focus on toll-like receptor agonists. Expert Rev. Vaccines 2010, 9, 157-173.
 
[55]  Sesardic, D. Synthetic peptide vaccines. J. Med. Microbiol. 1993, 39, 241-242.
 
[56]  Liu, Y.; McNevin, J.; Zhao, H.; Tebit, D.M.; Troyer, R.M.; McSweyn, M.; Ghosh, A.K.; Shriner, D.; Arts, E.J.; McElrath, M.J.; et al. Evolution of human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitopes: Fitness-balanced escape. J. Virol. 2007, 81, 12179-12188.
 
[57]  Kolesanova, E.F.; Sanzhakov, M.A.; Kharybin, O.N. Development of the schedule for multiple parallel -difficult Peptide synthesis on pins. Int. J. Pept. 2013.
 
[58]  Epstein, J.E.; Giersing, B.; Mullen, G.; Moorthy, V.; Richie, T.L. Malaria vaccines: Are we getting closer? Curr. Opin. Mol. Ther. 2007, 9, 12-24.
 
[59]  Volpina, O.M.; Gelfanov, V.M.; Yarov, A.V.; Surovoy, A.Y.; Chepurkin, A.V.; Ivanov, V.T. New virus-specific T-helper epitopes of foot-and-mouth disease viral VP1 protein. FEBS Lett. 1993, 333, 175-178.
 
[60]  Tarradas, J.; Monso, M.; Munoz, M.; Rosell, R.; Fraile, L.; Frías, M.T.; Domingo, M.; Andreu, D.; Sobrino, F.; Ganges, L. Partial protection against classical swine fever virus elicited by dendrimeric vaccine-candidate peptides in domestic pigs. Vaccine 2011, 29, 4422-4429.
 
[61]  Stanekova, Z.; Kiraly, J.; Stropkovska, A.; Mikušková, T.; Mucha, V.; Kostolanský, F.; Varečková, E. Heterosubtypic protective immunity against influenza a virus induced by fusion peptide of the hemagglutinin in comparison to ectodomain of M2 protein. Acta Virol. 2011, 55, 61-67.
 
[62]  Oscherwitz, J.; Yu, F.; Cease, K.B. A synthetic peptide vaccine directed against the 2ss2–2ss3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax. J. Immunol. 2010, 185, 3661-3668.
 
[63]  Solares, A.M.; Baladron, I.; Ramos, T.; Valenzuela, C.; Borbon, Z.; Fanjull, S.; Gonzalez, L.; Castillo, D.; Esmir, J.; Granadillo, M.; et al. Safety and immunogenicity of a human papillomavirus peptide vaccine (CIGB-228) in women with high-grade cervical intraepithelial neoplasia: first-in-human, proof-of-concept trial. ISRN Obstet. Gynecol. 2011.
 
[64]  Bernhardt, S.L.; Gjertsen, M.K.; Trachsel, S.; Møller, M.; Eriksen, J.A.; Meo, M.; Buanes, T.; Gaudernack, G. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study. Br. J. Cancer 2006, 95, 1474-1482.
 
[65]  Brunsvig, P.F.; Aamdal, S.; Gjertsen, M.K.; Kvalheim, G.; Markowski-Grimsrud, C.J.; Sve, I.; Dyrhaug, M.; Trachsel, S.; Møller, M.; Eriksen, J.A.; et al. Telomerase peptide vaccination: A phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother. 2006, 55, 1553-1564.
 
[66]  Brunsvig, P.F.; Kyte, J.A.; Kersten, C.; Sundstrøm, S.; Møller, M.; Nyakas, M.; Hansen, G.L.; Gaudernack, G.; Aamdal, S. Telomerase peptide vaccination in NSCLC: A phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial. Clin. Cancer Res. 2011, 17, 6847-6857.
 
[67]  Kyte, J.A.; Gaudernack, G.; Dueland, S.; Trachsel, S.; Julsrud, L.; Aamdal, S. Telomerase peptide vaccination combined with temozolomide: A clinical trial in stage IV melanoma patients. Clin. Cancer Res. 2011, 17, 4568-4580.
 
[68]  Greten, T.F.; Forner, A.; Korangy, F.; N’Kontchou, G.; Barget, N.; Ayuso, C.; Ormandy, L.A.; Manns, M.P.; Beaugrand, M.; Bruix, J. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma. BMC Cancer 2010, 10, e209.
 
[69]  Kyte, J.A.; Trachsel, S.; Risberg, B.; Thor, S.P.; Lislerud, K.; Gaudernack, G. Unconventional cytokine profiles and development of T cell memory in long-term survivors after cancer vaccination. Cancer Immunol. Immunother. 2009, 58, 1609-1626. 25.
 
[70]  Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, et al. A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol2014;88:7045-53.
 
[71]  Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, et al. Potent neutralizationof MERS-CoV by human neutralizing monoclonal antibodies to the viral spikeglycoprotein. Sci Transl Med 2014;6:234ra59.
 
[72]  Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, et al. Exceptionally potent neutralization of middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol 2014;88:7796-805.
 
[73]  Zhang N, Jiang S, Du L. Current advancements and potential strategies in thedevelopment of MERS-CoV vaccines. Expert Rev Vaccines 2014;13:761-74.
 
[74]  Mou H, Raj VS, van Kuppeveld FJ, Rottier PJ, Haagmans BL, Bosch BJ. The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies. J Virol 2013;87:9379-83.
 
[75]  Du L, Zhao G, Kou Z, Ma C, Sun S, Poon VK, et al. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle Eastrespiratory syndrome coronavirus as an essential target for vaccine develop-ment. J Virol 2013;87:9939-42.
 
[76]  Tuhin ali et al, Bioinformation 10(8): 533-538 (2014).
 
[77]  Wang, L. et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat. Commun. 6:7712.