American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2016, 4(2), 68-72
DOI: 10.12691/ajmr-4-2-5
Open AccessArticle

Molecular Screening of Staphylococcal Enterotoxin Type A Encoding Gene from MRS Clinical Isolates

H. A. Hussein1, , M. K. Ibrahim2, H. A. Nour El-Din3, E. H. El-Shatoury2, M. E. El-Fouly1, S. S. Abd-Eal1 and M. N. Abu El-Naga1

1National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo 11787, Egypt

2Faculty of Science, Ain Shams University

3Agricultural Genetic Engineering Research Institute (AGERI)

Pub. Date: May 13, 2016

Cite this paper:
H. A. Hussein, M. K. Ibrahim, H. A. Nour El-Din, E. H. El-Shatoury, M. E. El-Fouly, S. S. Abd-Eal and M. N. Abu El-Naga. Molecular Screening of Staphylococcal Enterotoxin Type A Encoding Gene from MRS Clinical Isolates. American Journal of Microbiological Research. 2016; 4(2):68-72. doi: 10.12691/ajmr-4-2-5

Abstract

Antibiotic resistance is a great problem in Egyptian hospitals and clinical centers. The aim of this study was the characterize of different clinical isolates of antibiotic resistant especially methicillin resistant staphylococci (MRS) on the basis of their production of enterotoxin A. Eighty four samples of bacteria were isolated from wound pus, throat, sputum, conjunctiva, urine and stool of patients in the Egyptian National Centre for Clinical and Environmental Toxicology. Sixty-two isolates had the typical biochemical characteristics of the Staphylococcus aureus, while two isolates were identified as Staphylococcus epidermidis. Forty two of the isolates were methicillin resistant, all were showed multidrug resistant to thirteen antibiotic. Twenty isolates encoded ent A gene (nineteen were Staphylococcus aureus and one was Staphylococcus epidermidis). Only twelve out of twenty ent A gene carriers can produce ent A protein which detected by enzyme linked immunosorbent assay (ELISA). Also, all carried mec A gene isolates were resistant to vancomycin. These findings prove that the staphylococcal clinical infections can cause food borne illness and vice versa.

Keywords:
MRSA MRS Vancomycin Resistance Ent A gene Staphylococcus aureus

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Argudín, M., Mendoza, M. & Rodicio, M, “Food poisoning and Staphylococcus aureus enterotoxins,” Toxins. 2.1751-1773. 2010.
 
[2]  Cosgrove, S. E, “The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs,” Clini. Infect. Dis. 42:S82-S89. 2006.
 
[3]  Donnelly, C. B., Leslie, J. E., Black, I. A. & Lewis, K. H, “Serological identification of enterotoxigenic staphylococci from cheese,” Appl. Microbiol., 15, 1382-1387. 1967.
 
[4]  Ghanwate, N., Thakare, P., Bhise, P.R. & Gawande, S, “Colorimetric method for rapid detection of Oxacillin resistance in Staphylococcus aureus and its comparison with PCR for mec A gene,” Scientific Reports 6, Article number: 23013. 2016.
 
[5]  Cunha, M.L.R.S., Calsolari, R.A.O. & Araújo-Júnior, J.P, “Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci,” Microbiol. Immunol., 51. 381-390. 2007.
 
[6]  Mimica, M.J., Berezin, E.N., Carvalho, R.L.B., Mimica, L.M.J., Safadi, M.A.P., Schneider, E. & Caiaffa-Filho, H.H, “Detection of methicillin resistance in Staphylococcus aureus isolated from pediatric patients: is the cefoxitin disk diffusion test accurate enough?,” Braz. J. Infect. Dis. 11415-417. 2007.
 
[7]  van Loo, I., Huijsdens, X., Tiemersma, E., de Neeling, A., van de Sande-Bruinsma, N., Beaujean, D., Voss, A. & Kluytmans, J., "Emergence of Methicillin-Resistant Staphylococcus aureus of Animal Origin in Humans". Infect Dis. Dec; 13(12):1834-9. 2007.
 
[8]  Waters, A.E., Contente-Cuomo, T., Buchhagen, J., Liu, C.M., Watson, L., Peare, K., Foster, J.T., Bowers, J., Driebe, E.M., Engelthaler, D.M., Keim P.S. & Price, L. B, “Multidrug Resistant Staphylococcus aureus in Us Meat and Poultry,”. Clin. Infect. Dis. May; 52 (10).1227-30. 2011.
 
[9]  Barrow, G.I. & Feltham, R.K, (Ed.) Cowan and Steel's, “Manual for the identification of medical bacteria. 3rdEdition,” Cambridge University Press. 1993.
 
[10]  CLSI, “Performance standards for antimicrobial susceptibility testing; 17th informational supplement,” CLSI M100-S17. 2007.
 
[11]  Clark, M.E. & Adams, N.A, “Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses,” J Gen. Virol. 34 (3): 475-83.1977.
 
[12]  Yan, M., Pamp, S.J., Fukuyama, J., Hwang, P.H., Cho, D.Y., Holmes, S. & Relman, D.A., “Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage,” Cell Host Microbe. 14 (6): 631-40. 2013.
 
[13]  SHEA, “Infection Control and Hospital Epidemiology,” The Journal of the Society for Healthcare Epidemiology of America (SHEA). "Unnecessary Antibiotic Use in Hospitals Responsible for $163 Million in Potentially Avoidable Healthcare Cost,” 2014.
 
[14]  De Lassence, A., Hidri, N., Timsit, J.F., Joly-Guillou, M.L., Thiery, G. & Boyer, A, Lable, P., Blivet, A., Kalinowski, H., Martin, Y., Lajonchere, J.P., Dreyfuss, D, “Control and outcome of a large outbreak of colonization and infection with glycopeptide-intermediate Staphylococcus aureus in an intensive care unit,” Clin. Infect. Dis. 42(2). 170-8. 2006.
 
[15]  Schweiger, E.S., Scheinfeld, N.S., Tischler, H.R. & Weinberg, J.M, “Linezolid and quinupristin/dalfopristin: novel antibiotics for Gram-positive infections of the skin,” J. Drugs Dermatol. 2(4). 378-83. 2003.
 
[16]  Jansen, A., Turck, M., Szekat, C., Nagel, M., Clever, I. & Bierbaum, G, “Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus,” Int. J. Med. Microbiol. 297. 205-15. 2007.
 
[17]  Maki, H., McCallum, N., Bischoff, M., Wada, A. & Berger-Bächi, B, “tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus,” Antimicrob. Agents Chemother. 48. 1953-9. 2004.
 
[18]  Noble, W.C., Virani, Z. & Cree R.G.A, “Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus,” FEMS Microbiol. Lett. 93. 195-8. 1992.
 
[19]  Broekema, N.M., Van T.T., Monson T.A., Marshall S.A. & Warshauer D.M, “Comparison of Cefoxitin and Oxacillin Disk Diffusion Methods for Detection of mecA-Mediated Resistance in Staphylococcus aureus in a Large-Scale Study,” J. Clin. Microbiol. 47(1). 217-219. 2009.
 
[20]  Witte, W., Pasemann, B. & Cuny, C, “Detection of low-level Oxacillin resistance in mec A positive Staphylococcus aureus,” Eur.J.Clin. Microbiol. Infect. Dis. 13408-412. 2007.
 
[21]  Sina, H., Ahoyo, T. A., Moussaoui, W., Keller, D., Bankolé, H.S., Barogui, Y., Stienstra, Y., Kotchoni, S.O., Prévost, G., & Baba-Moussa, L, “Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections,” BMC Microbiol. 13. 188. 2013.
 
[22]  Baker, M., Hobman, J.L., Dodd, C.E.R., Ramsden, S.J. & Stekel, D. J, “Mathematical modelling of antimicrobial resistance in agricultural waste highlights importance of gene transfer rate,” FEMS Microbiol. Ecol. (4). 92. 2016.
 
[23]  Carforaa, V., Capriolib A., Marria, N., Sagrafolia D., Bosellia C., Giacintia, G., Giangolinia, G., Sorbarab, L., Dottarellib, S., Battistib, A. & Amatistea, S, “Enterotoxin genes, enterotoxin production, and methicillin resistance in Staphylococcus aureus isolated from milk and dairy products in Central Italy,” I. D. J. 42. 12-1. 2015.