American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2013, 1(3), 53-56
DOI: 10.12691/ajmr-1-3-4
Open AccessArticle

Optimization of Environmental Parameters on Decolorizatiion of Remazol Black B using Mixed culture

Maulin P Shah1, , Patel KA1, Nair SS1, Darji AM1 and Shaktisinh J Maharaul2

1Industrial Waste Water Research Laboratory, Division of Applied & Environmental Microbiology Lab, Enviro Technology Limited, Gujarat, India

2Laboratory of Environmental Bioremediation, Narmada Clean Tech Limited (FETP), Guajrat, India

Pub. Date: August 20, 2013

Cite this paper:
Maulin P Shah, Patel KA, Nair SS, Darji AM and Shaktisinh J Maharaul. Optimization of Environmental Parameters on Decolorizatiion of Remazol Black B using Mixed culture. American Journal of Microbiological Research. 2013; 1(3):53-56. doi: 10.12691/ajmr-1-3-4


In the present study, an attempt was made to examine the potential of mixed culture (contains Pseudomonas putida, Psueomonas stutzeri, Pseudomonas aeruginosa, Pseudomonas mendocina) for decolorization of Remazol Black B dye in batch reactors. The effect of pH, temperature, inoculum, initial concentration of dye and initial concentration of glucose was studied with an aim to determine the optimal conditions required for maximum decolorization and degradation. The culture exhibited maximum decolorization ability at pH between 7-8 and at 30°C. A 10% (v/v) inoculum and 1% (w/v) glucose concentration were found to be the optimum for decolorization. A maximum of 98% decolorization was observed at 25 ppm initial concentration of dye after 18 hours of incubation period. At higher dye concentration of 300 ppm, the removal in colour was found to be 75% in 48 hours of incubation period. The results show that the enriched mixed culture from activated sludge has an excellent potential in removal of Remazol Black B dye from wastewater under aerobic conditions.

Remazol Black B pH temperature decolorization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 5


[1]  Maulin P Shah, Kavita A Patel, Sunu S Nair, Darji AM (2013) Optimization of Environmental Parameters on Microbial Degradation of Reactive Black Dye. Journal of Bioremediation & Biodegradation (USA) 4:3.
[2]  Maulin P Shah, Kavita A Patel, Sunu S Nair, Darji AM (2013) Bioremoval of Azo dye Reactive Red by Bacillus spp. ETL-1982. Journal of Bioremediation & Biodegradation (USA) 4:3.
[3]  Maulin P Shah, Kavita A Patel, Sunu S Nair, Darji AM (2013) Microbial degradation of textile dye (Remazol Black B) by Bacillus spp. ETL-2012. Journal of Bioremediation & Biodegradation (USA) 4:2.
[4]  Maulin P Shah, Kavita A Patel, Sunu S Nair, Darji AM (2013) Microbiolgical removal of crystal violet dye by Bacillus subtilis ETL-2211. OA journal of Biotechnology (UK), Feb 01;2(1):9.
[5]  Kariminiaae, Hamedaani.; Sakurai, A.; Sakakibara, M.; Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes Pigments. 2007 (72) 157-162.
[6]  Asad, S.; Amoozegar,M.A,; Pourbabaee, A.A.; Sarbolouki, M.N.;Dastgheib, S.M.M. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology. 2007, 2082-2088.
[7]  Aksu, Z.; Tezer, S. Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of Temperature. Process Biochemistry.2000 (36) 431-439.
[8]  Kirby, N.; Marchant, R.; McMullan, G. Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiology Letters. 2000 (188) 93-96.
[9]  Swamy, J.; Ramsay, J.A.The evaluation of white rot fungi in the decolouration of textile dyes. Enz Microbial Technology.1999 (24) 130-137.
[10]  Aksu, Z.; Donmez, G. Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochemistry. 2005 (40) 2443-2454.
[11]  Meehan, C.; Banat, IM.; McMullan, G.; Nigam, P.; Smyth, F.; Marchant, R. Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environment Internatioanl. 2000. (1-2) 75-79.
[12]  Robinson, T.; Chandran, B.; Nigam, P. Effect of pretreatments of three waste resiudes, wheat straw, corncobs and barley husks on dye adsorption. Bioresour Technol. 2002 (85) 119-124.
[13]  Hepel,M.; Hazelton,S. Photoelectrochemical Degradation of Diazo Dyes on Nanostructured Electrodes Electrochim Acta. 2005 (50) 5278-5291.
[14]  Vinodgopal, K.; Peller, J.; Makogon, O.; Kamat, P.V. Ultrasonic mineralization of a reactive textile azo dye, Remazol Black B. Water Research. 1998(32) 3646.
[15]  Pearce, CI.; Lloyd, JR.; Guthrie, JT. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigment. 2003 (58),179-196.
[16]  Andre, BDS.; Francisco, JC.; Jules, BVL. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology. 2007 (98) 2369-2385.
[17]  Chang, Jo-Shu.; Chen, Bor-Yann.; Lin, YS. Stimulation of bacterial decolorization of an azo dye by extracellular metabolites from Escherichia coli strain NO3. Bioresource Technology. 2004 (91) 243-48.
[18]  Chen, K.C.; Huang, W.T.; Wu, J.Y.; Houng, J.Y. Microbial decolorization of azo dyes by Proteus mirabilis, Journal of Industrial Microbiology and Biotechnology. 1999 (23) 686-690.
[19]  Aksu, Z. Reactive dye bioaccumulation by Saccharomyces cerevisiae.Process Biochem. 2003(10) 1437-1444.
[20]  Cetin, D.; Donmez,G. Decolorization of reactive dyes by mixed cultures isolated from textile effluent under anaerobic conditions. Enzyme and Microbial Technology. 2006 (38) 926-930.