American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2016, 4(1), 1-15
DOI: 10.12691/ajmr-4-1-1
Open AccessReview Article

The Future Challenges Facing Antimicrobial Therapy: Resistance and Persistence

Dr. Rehab Mahmoud abd El-Baky1,

1Department of Microbiology, Faculty of Pharmacy, Minia University, Minia Egypt

Pub. Date: January 06, 2016

Cite this paper:
Dr. Rehab Mahmoud abd El-Baky. The Future Challenges Facing Antimicrobial Therapy: Resistance and Persistence. American Journal of Microbiological Research. 2016; 4(1):1-15. doi: 10.12691/ajmr-4-1-1

Abstract

The emergence of resistance to antimicrobial agents is a pressing concern for human health that increases the need for the development of novel antimicrobial drugs. Antimicrobial resistance means that microorganism keep on growing even in the presence of a drug due to specific defense mechanisms [e.g. efflux-pumps]. Many of infectious diseases are difficult to be treated with antimicrobials not due to resistance but persisters [non-multiplying cells]. Distinction is important as persistent cells need an entirely design of new antimicrobial agents. Non-multiplying cells, do not cause overt disease but prolong the duration of therapy, increasing the chance of the emergence of resistance [i.e. bacterial or fungal biofilms and latent tuberculosis] resulting in therapy failure. Persisters are phenotypic variants of the wild type that present in all microorganisms which are able to survive antimicrobial treatment without acquiring resistance-conferring genetic changes and upon re-growth they produce a population of sensitive cells and new persisters. Persistence may arise spontaneously regardless to the presence of drug or environmentally induced due to starvation, DNA damage, oxidative stress and quorum sensing. Many approaches targeting non-multipliers would shorten the duration of therapy and decrease the emergence of resistance. Some depends on studying the effectiveness of the existing therapeutics against non-multipliers [i.e. pyrazinamide and gatifloxacin] and others depend on the discovery of new compounds targeting microbial genes that might be essential to non-multipliers viability or specific enzymatic or metabolic pathway [i.e. TG44 targets outer membrane of Helicobacter pylori and TMC207 targets proton pump of the ATP synthetase in Mycobacterium tuberculosis]. Clinical trials and studies are needed to produce a marketed antimicrobial agent active against both multiplying and non multiplying organisms and to know whether the approach of targeting non-multiplying bacteria is clinically relevant and will produce compounds that reduce the rate of emergence of bacterial resistance.

Keywords:
antimicrobial resistance persisters non-multiplying microorganisms

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Gootz, T.D. Discovery and development of new antimicrobial Agents. Clin. Microbiol. Rev. 3[1]. 13-31. 1990.
 
[2]  Guardabassi, L., Courvalin, P. Modes of antimicrobial action and mechanisms of bacterial resistance: antimicrobial resistance in bacteria of animal origin. P: 1-18. 2006 FM Aarestrup, ed, ASM Press, Washington DC, USA.
 
[3]  Braine, T. Bull. World Health Organ, 89. 88-89. 2011.
 
[4]  Bush, K. et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 9, 894-896. 2011.
 
[5]  Spellberg, B. et al. Combating antimicrobial resistance: Policy recommendations to save lives. Clin. Infect. Dis, 52 [Suppl. 5], S397-S428. 2011.
 
[6]  Butler, M.S., Cooper, M.A. Antibiotics in the clinical pipeline in. J. Antibiot. [Tokyo]. 64[6]. 413-425. 2011.
 
[7]  Baquero, F., Blàazquez, J. Evolution of antibiotic resistance. Trends Ecol. Evol. 12[12]. 482-487. 1997.
 
[8]  Berger-Bächi, B. Resistance mechanisms of gram positive bacteria. Int. J. Med. Microbiol. 292. 27-35. 2002.
 
[9]  Lewis, K., Salyers, A., Taber, H., Wax, R. Bacterial Resistance to Antimicrobials: Mechanisms, Genetics, Medical Practice and Public Health, 2002, Marcel Dekker, New York.
 
[10]  Levy, S.B., Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 10. S122-S129. 2004.
 
[11]  Hu, Y. et al. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J. Bacteriol. 182. 6358-6365. 2000.
 
[12]  Barer, M.R. et al. Relationships between culturability, activity and virulence in pathogenic bacteria. J. Infect. Chemother. 6. 108-111. 2000.
 
[13]  Coates, A.R., Hu, Y. New strategies for antibacterial drug design: targeting non-multiplying latent bacteria. Drugs R. D. 7 133-151. 2006.
 
[14]  Coates, A. et al. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 1. 895–910. 2002.
 
[15]  Kardas, P. et al. A systematic review and meta-analysis of misuse of antibiotic therapies in the community. Int. J. Antimicrob. Agents. 26. 106-113. 2005.
 
[16]  Hobby, G.L., Meyer, K., Chaffee, E. Observations on the mechanism of action of penicillin. Proc. Soc. Exp. Biol. Med. 50. 281-285. 1942.
 
[17]  Bigger, J.W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244. 497-500. 1944.
 
[18]  Allison, K.R. et al. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr. Opin. Microbiol. 14. 593-598. 2011.
 
[19]  Ranall, M.V. et al. Resolving biofilm infections: current therapy and drug discovery strategies. Curr. Drug Targets. 13[11]. 1375-1385. 2012.
 
[20]  Luidalepp, H., Jõers, A., Kaldalu, N., Tenson, T. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J. Bacteriol. 193. 3598-3605. 2011.
 
[21]  Jayaraman, R. Bacterial persistence: some new insights into an old phenomenon. J. Biosci. 33. 795-805. 2008.
 
[22]  Lewis, K.. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322. 107-131. 2008.
 
[23]  Schuster, C.F., Bertram, R.. Toxin-antitoxin systems are ubiquitousand versatile modulators of prokaryotic cell fate. FEMS Microbiol. Lett. 340. 73-85. 2013.
 
[24]  Van Melderen, L., Saavedra De Bast, M. Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet. 5. e1000437. 2009.
 
[25]  Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Drèze, P., Van Melderen, L.. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39. 5513-5525. 2011.
 
[26]  Masuda, H., Tan, Q., Awano, N., Wu, K-P., Inouye, M., Yee, U. enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA [YeeV] toxicity in Escherichia coli. Mol. Microbiol. 84. 979-989. 2012.
 
[27]  Wang, X., Lord, D.M., Cheng, H-Y., Osbourne, D.O., Hong, S.H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., Benedik, M.J., Page, R., Wood, T.K.. A new type V toxin-antitoxin system wheremRNAfor toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8. 855-861. 2012.
 
[28]  Moyed, H.S., Bertrand, K.P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155.768-775. 1983.
 
[29]  Korch, S.B., Henderson, T.A., Hill, T.M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by [p]ppGpp synthesis. Mol. Microbiol. 50. 1199-1213. 2003.
 
[30]  Ogura, T., Hiraga, S. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. U S A. 80. 4784-4788. 1983.
 
[31]  Makarova, K.S., Wolf, Y.I., Koonin, E.V. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol. Direct., 4. 19. 2009.
 
[32]  Falla, T.J., Chopra, I. Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob. Agents Chemother. 42. 3282-3284. 1998.
 
[33]  Keren, I., Shah, D., Spoering, A., Kaldalu, N., Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186. 8172-8180. 2004.
 
[34]  Korch, S.B., Hill, T.M. Ectopic overexpression of wild-type and mutant hipA genes in Escherichia coli: Effects on macromolecular synthesis and persister formation. J. Bacteriol. 188. 3826-3836. 2006.
 
[35]  Vazquez-Laslop, N., Lee, H., Neyfakh, A.A. Increased persistence in Escherichia coli caused by controlled expression of toxins or other unrelated proteins. J. Bacteriol. 188. 3494-3497. 2006.
 
[36]  Dorr, T., Vulic, M., Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317. 2010.
 
[37]  Ren, D., Bedzyk, L.A., Thomas, S.M., Ye, R.W., Wood, T.K.. Gene expression in Escherichia coli biofilms. Appl. Microbiol. Biotechnol. 64. 515-524. 2004.
 
[38]  González Barrios, A.F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W.E., Wood, T.K.. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator [MqsR, B3022]. J. Bacteriol. 188. 305-316. 2006.
 
[39]  Brown, B.L., Grigoriu, S., Kim, Y., Arruda, J.M., Davenport, A., Wood, T.K., Peti, W., Page, R.. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5. e1000706. 2009.
 
[40]  Hong, S.H., Wang, X., O’Connor, H.F., Benedik, M.J., Wood, T.K. Bacterial persistence increases as environmental fitness decreases. Microb. Biotechnol. 5. 509-522. 2012.
 
[41]  Dalebroux, Z.D., Swanson, M.S. ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 10. 203-212. 2012.
 
[42]  Korch, S.B., Henderson, T.A., Hill, T.M.. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by [p]ppGpp synthesis. Mol. Microbiol. 50. 1199-1213. 2003.
 
[43]  Kwan, B.W., Valenta, J.A., Benedik, M.J., Wood, T.K.. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57. 1468-1473. 2013.
 
[44]  Li, Y., Zhang, Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherchia coli. Antimicrob. Agents Chemother. 51. 2092-2099. 2007.
 
[45]  Wakamoto, Y,, Dhar, N., Chait, R., Schneider, K., Signorino-Gelo, F., Leibler, S., McKinney, J.D. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339. 91-95. 2013.
 
[46]  Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., Leibler, S. Bacterial persistence as a phenotypic switch. Science. 305. 1622-1625. 2004.
 
[47]  Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., McKay, G., Siehnel, R., Schafhauser, J., Wang, Y., Britigan, B.E., Singh, P.K. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334. 982-986. 2011.
 
[48]  Khakimova, M., Ahlgren, H.G., Harrison, J.J., English, A.M., Nguyen, D. The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J. Bacteriol. 195. 2011-2020. 2013.
 
[49]  Orman, M.A.., Brynildsen, M.P. Dormancy is not necessary or sufficient for bacterial persistence. Antimicrob. Agents Chemother. 57. 3230-3239. 2013.
 
[50]  Vega, N.M., Allison, K.R., Khalil, A.S., Collins, J.J. Signaling-Mediated Bacterial Persister Formation. Nat. Chem. Biol. 8[5]. 431-433. 2012.
 
[51]  Dorr, T., Lewis, K., Vulic, M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 5.e1000760. 2009.
 
[52]  Möker, N., Dean, C.R., and Tao, J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J. Bacteriol. 192. 1946-1955. 2010.
 
[53]  Wu, Y., VuliC. M., Keren, I., and Lewis, K. Role of oxidative stress in persister tolerance. Antimicrob. Agents Chemother. 56. 4922-4926. 2012.
 
[54]  Debbia, E.A., Roveta, S., Schito, A.M., Gualco, L., Marchese, A. Antibiotic persistence: the role of spontaneous DNA repair response. Microb. Drug Resist. 7. 335-342. 2001.
 
[55]  Murakami, K., Ono, T., Viducic, D., Kayama, S., Mori, M., Hirota, K., Nemoto, K., and Miyake, Y. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol. Lett. 242. 161-167. 2005.
 
[56]  Poole, K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20. 227-234. 2012.
 
[57]  Cardoso, K., Gandra, R.F., Wisniewski, E.S., Osaku, C.A., Kadowaki, M.K., Felipach-Neto, V., Haus, L.F., and Sima˜o, Rde.C. DnaK and GroEL are induced in response to antibiotic and heat shock in Acinetobacter baumannii. J. Med. Microbiol. 59. 1061-1068. 2010.
 
[58]  Kayama, S., Murakami, K., Ono, T., Ushimaru, M., Yamamoto, A., Hirota, K., and Miyake, Y. The role of rpoS gene and quorum-sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 298. 184-192. 2009.
 
[59]  Leung, V., Lévesque, C.M. A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol.  194. 2265-74. 2012.
 
[60]  Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., and Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43. 717-731. 2002.
 
[61]  Fung, D.K., Chan, E.W., Chin, M.L., and Chan, R.C. Delineation of a bacterial starvation stress response network which can mediate antibiotic tolerance development. Antimicrob. Agents Chemother. 54. 1082-1093. 2010.
 
[62]  Amato, S.M., Orman, M.A., and Brynildsen, M.P. Metabolic control of persister formation in Escherichia coli. Mol. Cell. 50. 475-487. 2013.
 
[63]  Mitchison, D.A. The diagnosis and therapy of tuberculosis during the past 100 years. Am. J. Respir. Crit. Care Med. 171. 699-706. 2005.
 
[64]  Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45. 999-1007. 2001.
 
[65]  Lee, J., Attila, C., Cirillo, S.L., Cirillo, J.D., Wood, T.K.. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb. Biotechnol. 2. 75-90. 2009.
 
[66]  Lee, J., Bansal, T., Jayaraman, A., Bentley, W.E., Wood, T.K. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl. Environ. Microbiol. 73. 4100-4109. 2007.
 
[67]  Lee, J., Jayaraman, A., Wood, T.K.. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7.42. 2007.
 
[68]  Bansal, T., Alaniz, R.C., Wood, T.K., Jayaraman, A.. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. U. S. A. 107. 228-233. 2010.
 
[69]  Eng, R.H., Padberg, F.T., Smith, S.M., Tan, E.N., and Cherubin, C.E. Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob. Agents Chemother. 35. 1824-1828. 1991.
 
[70]  Aldridge, B.B., Fernandez-Suarez, M., Heller, D., Ambravaneswaran, V., Irimia, D., Toner, M., and Fortune, S.M. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science. 335. 100-104. 2012.
 
[71]  Shah, D., Zhang, Z., Kodursky, A., Kaldalu, N., Kurg, K. and Lewis, K. Persisters: a distinct physiological state of E. coli, BMC Microbiol. 6. e53. 2006.
 
[72]  Levin, B.R., and Rozen, D.E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol.. 4. 556-562. 2006
 
[73]  Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., and Yamaguchi, A. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol. Microbiol. 55. 1113-1126. 2005.
 
[74]  Adams, K.N., Takaki, K., Connolly, L.E., Wiedenhoft, H., Winglee, K., Humbert, O., Edelstein, P.H., Cosma, C.L., and Ramakrishnan, L. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145. 39-53. 2011.
 
[75]  Allison, K.R., Brynildsen, M.P., and Collins, J.J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 473. 216-220. 2011.
 
[76]  Gusarov, I., Shatalin, K., Starodubtseva, M., Nudler, E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325. 1380-1384. 2009.
 
[77]  Shatalin, K., Shatalina, E., Mironov, A., Nudler, E. H2S: A universal defense against antibiotics in bacteria. Science 334. 986-990. 2011
 
[78]  Baek, S.H., Li, A.H., and Sassetti, C.M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9. e1001065. 2011.
 
[79]  Dwyer, D.J., Kohanski, M.A., Hayete, B., Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3. 91. 2007.
 
[80]  Foti, J.J., Devadoss, B., Winkler, J.A., Collins, J.J., and Walker, G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 336. 315-319. 2012.
 
[81]  Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 13. 797-810. 2007.
 
[82]  Wang, X., Zhao, X. Contribution of oxidative damage to antimicrobial lethality. Antimicrob Agents Chemother 53, 1395-1402. 2009.
 
[83]  Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R., and Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339. 1213–1216. 2013.
 
[84]  Liu, Y., and Imlay, J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science.339. 1210-1213. 2013.
 
[85]  Belenky, P., and Collins, J.J. Microbiology. Antioxidant strategies to tolerate antibiotics. Science 334. 915-916. 2011.
 
[86]  Van Acker, H., Sass, A., Bazzini, S., De Roy, K., Udine, C., Messiaen, T., Riccardi, G., Boon, N., Nelis, H.J., Mahenthiralingam, E., and Coenye, T. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS ONE 8. e58943. 2013.
 
[87]  Hoffman, L.R., D’Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A., and Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436. 1171-1175. 2005.
 
[88]  He, H., Cooper, J.N., Mishra, A., and Raskin, D.M. Stringent response regulation of biofilm formation in Vibrio cholerae. J. Bacteriol. 194. 2962-2972. 2012.
 
[89]  Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 35. 322-332. 2010.
 
[90]  Staley, J.T., Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39. 321-346. 1985.
 
[91]  Kaeberlein, T., Lewis, K., Epstein, S.S. Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science. 296. 1127-1129. 2002.
 
[92]  Shleeva, M.O., Mukamolova, G.V., Telkov, M.V., Berezinskaia, T.L., Syroeshkin, A.V., Biketov, S.F., Kaprel'iants, A.S. Formation of nonculturable Mycobacterium tuberculosis and their regeneration Mikrobiologiia.  72[1]. 76-83. 2003.
 
[93]  Gavrish, E. et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 21. 509-518. 2014.
 
[94]  Wilson, M. C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506. 58-62. 2014.
 
[95]  Ling, L.L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., Mueller, A., Scha¨berle, T. F., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. A., Cohen, D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., Chen, C. & Lewis, K. A new antibiotic kills pathogens without detectable resistance. Nature. 517. 455-459. 2015.
 
[96]  Dunne, W. M. Bacterial adhesion: seen any good biofilm lately?. Clin. Microbiol. Rev. 15. 155-166. 2002.
 
[97]  Brown, M.R.W. The role of the envelope in resistance. In: Brown MRW, eds. Resistance of Pseudomonas aeruginosa, London: Wiley. 71-107. 1997.
 
[98]  Lafleur, M.D., Qi, Q., Lewis, K. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother.. 54. 39-44. 2010
 
[99]  Costerton, J.W. et al. Bacterial biofilms: a common cause of persistent infections. Science. 284. 1318-1322. 1999.
 
[100]  McCune, R.M. Jr., McDermott, W., Tompsett, R. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med. 104. 763-802. 1956.
 
[101]  McCune, R.M. Jr., Tompsett, R. Fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. I. The persistence of drug-susceptible tubercle bacilli in thetissues despite prolonged antimicrobial therapy. J Exp Med. 104.737-762. 1956.
 
[102]  Lee, H.H., Molla, M.N., Cantor, C.R., Collins, J.J. Bacterial charity work leads to population- wide resistance. Nature 467. 82-85. 2010.
 
[103]  Katneni, R., Hedayati, S.S. Central venous catheter-related bacteremia in chronic hemodialysis patients: epidemiology and evidence-based management. Nat. Clin. Pract. Nephrol. 3. 256-266. 2007.
 
[104]  Kauffman, C.A. et al. Attempts to eradicate methicillin-resistant Staphylococcus aureus from a long-term-care facility with the use of mupirocin ointment. Am. J. Med.. 94. 371-378. 1993
 
[105]  Zhao, J., Schloss, P.D., Kalikin, L.M., Carmody, L.A., Foster, B.K., Petrosino, J.F., Cavalcoli, J.D., VanDevanter, D.R., Murray, S.., Li, J.Z.., et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A. 109. 5809-5814. 2012.
 
[106]  LaCrue, A.N., Scheel, M., Kennedy, K., Kumar, N., Kyle, D.E. Effects of artesunate on parasite recrudescence and dormancy in the rodent malaria model Plasmodium vinckei. PLoS One. 6. e26689. 2011.
 
[107]  Cohen, N. R., Lobritz, M. A. and Collins, J.J. Microbial persistence and the road to drug resistance Cell Host Microbe. 13. 632-642. 2013.
 
[108]  Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodrı´guez-Rojas, A., Bla´ zquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F., Vogel, J., and Matic, I. b-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun. 4. 1610. 2013.
 
[109]  Kohanski, M.A., DePristo, M.A., and Collins, J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37. 311-320. 2010.
 
[110]  Nair, C.G., Chao, C., Ryall, B., and Williams, H.D. Sub-lethal concentrations of antibiotics increase mutation frequency in the cystic fibrosis pathogen Pseudomonas aeruginosa. Lett. Appl. Microbiol. 56. 149-154. 2013.
 
[111]  Gullberg, E., Cao, S., Berg, O.G., Ilba¨ck, C., Sandegren, L., Hughes, D., and Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7. e1002158. 2011.
 
[112]  Zhang, Q., Lambert, G., Liao, D., Kim, H., Robin, K., Tung, C.K., Pourmand, N., and Austin, R.H. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333. 1764-1767. 2011.
 
[113]  Driffield, K., Miller, K., Bostock, J.M., O’Neill, A.J., and Chopra, I. Increased mutability of Pseudomonas aeruginosa in biofilms. J. Antimicrob. Chemother. 61. 1053-1056. 2008.
 
[114]  Ryder, V.J., Chopra, I., and O’Neill, A.J. Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS ONE 7. e47695. 2012.
 
[115]  Beaber, J.W., Hochhut, B., and Waldor, M.K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427. 72-74. 2004.
 
[116]  Zhang, X., McDaniel, A.D., Wolf, L.E., Keusch, G.T., Waldor, M.K., and Acheson, D.W.. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181. 664-670. 2000.
 
[117]  Stecher, B., Denzler, R., Maier, L., Bernet, F., Sanders, M.J., Pickard, D.J., Barthel, M., Westendorf, A.M., Krogfelt, K.A., Walker, A.W., et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 109. 1269-1274. 2012.
 
[118]  Savage, V.J., Chopra, I., and O’Neill, A.J.. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57. 1968-1970. 2013.
 
[119]  Perriens, J.H., St Louis, M.E., Mukadi, Y.B., Brown, C., Prignot, J., Pouthier, F., Portaels, F., Willame, J.C., Mandala, J.K., Kaboto, M., et al. Pulmonary tuberculosis in HIV-infected patients in Zaire. A controlled trial of treatment for either 6 or 12 months. N Engl J Med. 332. 779-784. 1995.
 
[120]  Dagan, R. et al. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy. J. Antimicrob. Chemother. 47. 129-140. 2001.
 
[121]  Ball, P. et al. Antibiotic therapy of community respiratory tract infections: strategies for optimal outcomes and minimized resistance emergence. J. Antimicrob. Chemother. 49. 31-40. 2002.
 
[122]  Hu, Y. et al. Sterilising action of pyrazinamide in models of dormant and rifampicin-tolerant Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 10. 317-322. 2006.
 
[123]  Zhang, Y. et al. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J. Med. Microbiol. 51. 42-49. 2002.
 
[124]  Zhang, Y., Mitchison, D. The curious characteristics of pyrazinamide: a review. Int. J. Tuberc. Lung Dis. 7. 6-21. 2003.
 
[125]  Trampuz, A., Zimmerli, W. Antimicrobial agents in orthopaedic surgery: Prophylaxis and treatment. Drugs. 66[8]. 1089-1105. 2006.
 
[126]  Falagas, M.E., Bliziotis, I.A., Fragoulis, K.N. Oral rifampin for eradication of Staphylococcus aureus carriage from healthy and sick populations: a systematic review of the evidence from comparative trials. Am. J. Infect. Control. 35. 106-114. 2007.
 
[127]  Hu, Y., Coates, A.R., Mitchison, D.A. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47. 653-657. 2003.
 
[128]  Osburne, M.S., Rothstein, D.M., Farquhar, R., Murphy, C.K. In vitro time-kill activities of rifalazil, alone and in combination with vancomycin, against logarithmic and stationary cultures of Staphylococcus aureus. J. Antibiot. [Tokyo]. 59. 80-85. 2006.
 
[129]  Kamoda, O. et al. In vitro activity of a novel antimicrobial agent, TG44, for treatment of Helicobacter pylori infection. Antimicrob. Agents Chemother. 50[9]. 3062-3069. 2006.
 
[130]  Hu, Y., Shamaei-Tousi, A., Liu, Y., Coates, A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections. PLoS One. 5. e11818. 2010.
 
[131]  Pethe, K. et al. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nat. Commun. 1. 57. 2010.
 
[132]  Zang, R., Li, D., Tang, I., Wang, J., Yang, S. Cell-based assays in high-throughput screening for drug discovery. Int. J. Biotechnol. Wellness Ind. 1. 31-51. 2012.
 
[133]  Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5. 48-56. 2007.
 
[134]  Kobayashi, A. et al. Growth phase-dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J. Bacteriol. 188. 5693-5703. 2006.
 
[135]  Mascher, T. et al. The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and by mutations in pbp2x involved in beta-lactam resistance. J. Bacteriol. 188. 1959-1968. 2006.
 
[136]  Koul, A. et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol. 3. 323-324. 2007.
 
[137]  Haagsma, A.C. et al. Probing the interaction of the diarylquinoline TMC207with its target mycobacterial ATP synthase. PLoS One. 6. e23575. 2011.
 
[138]  Diacon, A.H. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360. 2397-2405. 2009.
 
[139]  van Soolingen, D. et al. The antipsychotic thioridazine shows promising therapeutic activity in a mouse model of multidrug-resistant tuberculosis. PLoS One. 5. e12640. 2010.
 
[140]  Williams, K. et al. Sterilizing activities of novel combinations lacking first and second-line drugs in a murine model of tuberculosis. Antimicrob. Agents Chemother. 56. 3114-3120. 2012.
 
[141]  Katneni, R., Hedayati, S.S. Central venous catheter-related bacteremia in chronic hemodialysis patients: epidemiology and evidence-based management. Nat. Clin. Pract. Nephrol. 3. 256-266. 2007.
 
[142]  Mak, P.A. et al. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem. Biol. 7. 1190-1197. 2012.
 
[143]  Kim, J.S. et al. Selective killing of bacterial persisters by a single chemical compound without affecting normal antibiotic-sensitive cells. Antimicrob. Agents Chemother. 55. 5380-5383. 2011.
 
[144]  Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature. 441. 358-361. 2006.
 
[145]  Wright, H.T., Reynolds, K.A. Antibacterial targets in fatty acid biosynthesis. Curr. Opin. Microbiol. 10. 447-453. 2007.
 
[146]  Wang, J., Sintim, H.O. Dialkylamino-2,4-dihydroxybenzoic acids as easily synthesized analogues of platensimycin and platencin with comparable antibacterial properties. Chemistry. 17. 3352-3357. 2011.
 
[147]  Brinster, S. et al. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature. 458. 83-86. 2009.
 
[148]  Yamamoto, Y. et al. The Group B Streptococcus NADH oxidase Nox-2 is involved in fatty acid biosynthesis during aerobic growth and contributes to virulence. Mol. Microbiol. 62. 772-785. 2006.
 
[149]  Allison, K.R. et al. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 473. 216-220. 2011.
 
[150]  Sayahi, H. et al. Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. Bioorg. Med. Chem. Lett. 21. 4804-4807. 2011.
 
[151]  Ahiwale, S. et al. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7like lytic phage. Curr. Microbiol. 62. 335-340. 2011.
 
[152]  Hughes, K.A., Sutherland, I.W., Jones, M.V. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology. 144. 3039-3047. 1998.
 
[153]  Pearl, S., Gabay, C., Kishony, R., Oppenheim, A., Balaban, N.Q. Nongenetic individuality in the host-phage interaction. PLoS Biol. 6[5]. e120. 2008.
 
[154]  Projan, S. Phage-inspired antibiotics? Nature Biotech. 22. 167-168. 2004.
 
[155]  Lu, T.K., and Collins, J.J.. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 106. 4629-4634. 2009.
 
[156]  Wexselblatt, E., Oppenheimer-Shaanan, Y., Kaspy, I., London, N., Schueler-Furman, O., Yavin, E., Glaser, G., Katzhendler, J., and Ben-Yehuda, S.. Relacin, a novel antibacterial agent targeting the Stringent Response. PLoS Pathog. 8. e1002925. 2012.
 
[157]  Wright, A., Hawkins, C.H., Anggard, E.E., Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa, a preliminary report of efficacy. Clin. Otolaryngol. 34. 349-357. 2009.
 
[158]  Fischetti, V.A., Nelson, D., Schuch, R. Reinventing phage therapy: are the parts greater than the sum? Nat. Biotechnol. 24. 1508-1511. 2006.
 
[159]  Entenza, J.M., Loeffler, J.M., Grandgirard, D., Fischetti, V.A., Moreillon, P. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob. Agents Chemother. 49. 4789-4792. 2005.
 
[160]  Murray, C.J. Social, economic and operational research on tuberculosis: recent studies and some priority questions. Bull. Int. Union Tuberc. Lung Dis. 66. 149-156. 1991.
 
[161]  Yew, W.W. Directly observed therapy, short-course: the best way to prevent multidrug-resistant tuberculosis. Chemotherapy. 45 [Suppl 2].26-33. 1999.
 
[162]  Guillemot, D., Carbon, C., Balkau, B., Geslin, P., Lecoeur, H., Vauzelle- Kervroedan, F. et al. Low dosage and long treatment duration of beta-lactam: risk factors for carriage of penicillin resistant Streptococcus pneumoniae. JAMA. 279[5]. 365-370. 1998.
 
[163]  Dagan, R., Klugman, K.P., Craig, W.A., Baquero, F. Evidence to support the rationale that bacterial eradication in respiratory tract infection is an important aim of antimicrobial therapy. J. Antimicrob. Chemother. 47. 129-140. 2001.
 
[164]  Hu, Y.M., Butcher, P.D., Sole, K., Mitchison, D.A., Coates, A.R. Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS. Microbiol. Lett. 158. 139-145. 1998.
 
[165]  Hu, Y., Coates, A.R. Transcription of two sigma 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 181. 469-476. 1999.
 
[166]  Beenken, K.E., Dunman, P.M., McAleese, F., Macapagal, D., Murphy, E., Projan, S.J. et al. Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186, 4665-4684. 2004.
 
[167]  Johansen, J., Rasmussen, A.A., Overgaard, M., Valentin-Hansen, P. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364. 1-8. 2006.
 
[168]  Hu, Y., Coates, A.R., Mitchison, D.A. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47. 653-657. 2003.
 
[169]  Fauvart, M., De Groote, V.N., Michiels, J. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol. 60. 699-709. 2011.
 
[170]  Aberg, V., and Almqvist, F. Pilicides-small molecules targeting bacterial virulence. Org. Biomol. Chem. 5. 1827-1834. 2007.
 
[171]  Cegelski, L., Pinkner, J.S., Hammer, N.D., Cusumano, C.K., Hung, C.S., Chorell, E., Aberg, V., Walker, J.N., Seed, P.C., Almqvist, F., et al. Small molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 5 913-919. 2009.
 
[172]  Boles, B.R., and Horswill, A.R. . Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4. e1000052. 2008.
 
[173]  Lu, T.K., and Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104. 11197-11202. 2007.
 
[174]  Ferna´ndez, L., and Hancock, R.E. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 25. 661-681. 2012.
 
[175]  Brynildsen, M.P., Winkler, J.A., Spina, C.S., MacDonald, I.C., and Collins, J.J. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol. 31. 160-165. 2013.
 
[176]  Grant, S.S., Kaufmann, B.B., Chand, N.S., Haseley, N., and Hung, D.T. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. USA 109.12147-12152. 2012.
 
[177]  Barczak, A.K., and Hung, D.T. Productive steps toward an antimicrobial targeting virulence. Curr. Opin. Microbiol. 12. 490-496. 2009.
 
[178]  NCCLS. Methods for determining bactericidal activity of antibacterial agents; approved guideline. NCCLS document M26 A. Villanova, PA: NCCLS, 1999.
 
[179]  Estes L. Review of pharmacokinetics and pharmacodynamics of antibacterial agents. Mayo Clin Proc. 73.1114-22. 1998.
 
[180]  Vogelman B, Craig WA. Kinetics of antibacterial activity. J Pediatr 108. 835-840. 1986.
 
[181]  Wang X, Kang Y, Luo C, Zhao T, Liu L, Jiang X, Fu R, An S, Chen J, Jiang N, Ren L, Wang Q, Baillie JK, Gao Z, Yu J. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination. mBio 5. 00942-13. 2014.