American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2015, 3(2), 65-75
DOI: 10.12691/ajmr-3-2-5
Open AccessArticle

Isolation and Screening of Indigenous Bambara Groundnut (Vigna Subterranea) Nodulating Bacteria for their Tolerance to Some Environmental Stresses

Ngo Nkot Laurette1, , Ngo Bisseck Maxémilienne1, Fankem Henri1, Adamou Souleymanou2, Kamguia Kamdem1, Ngakou Albert3, Nwaga Dieudonné4 and Etoa François-Xavier4

1Department of Plant Biology, Faculty of Science, University of Douala, Douala, Cameroon

2Laboratory of Soil Microbiology, Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon

3Department of Biological Sciences, University of Ngaoundere, Ngaoundere, Cameroon

4Department of Microbiology, Faculty of Science, University of Yaounde I, Yaounde, Cameroon

Pub. Date: March 22, 2015

Cite this paper:
Ngo Nkot Laurette, Ngo Bisseck Maxémilienne, Fankem Henri, Adamou Souleymanou, Kamguia Kamdem, Ngakou Albert, Nwaga Dieudonné and Etoa François-Xavier. Isolation and Screening of Indigenous Bambara Groundnut (Vigna Subterranea) Nodulating Bacteria for their Tolerance to Some Environmental Stresses. American Journal of Microbiological Research. 2015; 3(2):65-75. doi: 10.12691/ajmr-3-2-5


Environmental stresses are important limiting factors for crops production. The aim of this experiment is to isolate Legume Nodulating Bacteria (LNB) obtained from root nodules of bambara groundnut (Vigna subterranea L.) plants and evaluate their performance under some environmental constraints. Samples were collected in Cameroon from three location sites of the Humid-forest zone: Logbessou in the Littoral region; Mfoua in the South and Boga in the Centre region. Nodulation of bambara groundnut was examined in plastic bags and root nodules were collected from seedling. After their isolation, the bacteria were confirmed as LNB by re-nodulating Macroptilium atropurpureum. The morphological, cultural and phenotypic characteristics (utilization of carbon, tolerance to salt, pH, aluminium) of isolates were determined. The results obtained were analyzed statistically by ANOVA using the software SPSS analysis version 11.5. Duncan test was used to measure the difference among the means at a level of p<0.05. A collection of 18 isolates was obtained on Yeast Extract Mannitol Agar medium. Authentication experiments, confirmed that the majority of the isolates (66.67%) were LNB due to their ability to infect the host plant. Bambara groundnut isolates are different morphologically. Dendrogram of the phenotypic characteristics showed that, below the boundary level of 50% average similarity, isolates fell into at least three distinct groups. All isolates showed fast-growing capacity. Most isolates (66.67%) were able to grow in a medium with pH as low as and Al concentration of 50 µM (58.33 %). Some isolates (50%) showed weak growth capacity at 4% NaCl. The bambara groundnut isolates tested were able to use a broad range of carbohydrates as sole source of carbon. The isolates from the present study may be useful to increase the symbiotic nitrogen fixation in legume.

bambara groundnut isolation legume nodulating bacteria phenotypic characterization

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 8


[1]  Adeparusi EO (2001). Effect of processing on some minerals, anti-nutrients and nutritional composition of African yam bean. J. Sustain. Environ. 3:101-108.
[2]  Allen ON, Allen EK (1981). The Leguminosae. A Source Book of Characteristics, Uses and Nodulation, The University of Wisconsin Press, 812 p.
[3]  Anderson, JM, Ingram JS (1993). Tropical soil biology and fertility: a hand book of methods. 2nd ed. C.A.B. International Wallingford, U.K. 171 p.
[4]  Appunu C, Reddy LML, Reddy CVCM, Sen D, Dhar B (2009). Symbiotic diversity among acid-tolerant bradyrhizobial isolates with cowpea. J. A. S. 4 (3): 126-131.
[5]  Arias A, Martı´nez-Drets G (1976). Glycerol metabolism in Rhizobium. Can. J. Microbiol. 22 (2): 150-153.
[6]  Athar M, Johnson AD (1996) Nodulation, biomass production and nitrogen in alfalfa under drought. J. Plant Nutr. 19: 185-199.
[7]  Azam-Ali SN, Sesay A, Karikari SK, Massawe FJ, Aguilar-Manjarrez J, Brennan M, Hampson KJ (2001). Assessing the potential of an underutilised crop-a case study using bambara groundnut. Exp. Agric. 37: 433-472.
[8]  Bado BV (2002). Rôle des légumineuses sur la fertilité des sols ferrugineux tropicaux des zones guinéennes et soudaniennes du Burkina Faso. PhD thesis, Université Laval, Laval, Canada.
[9]  Bala A, Murphy PJ, Osunde AO, Giller KE (2003). Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Appl. Soil Ecol. 22:211-223.
[10]  Bamshaiye OM, Adegbol, JA, Bamishaiye EI (2011). Bambara groundnut: an Under-Utilized Nut in Africa. Advances in Agricultural Biotechnology 1: 60-72.
[11]  BaoLing H, ChengQun L, Bo W, LiQin F (2007). A rhizobia strain isolated from root nodule of gymnosperm Podocarpus macrophyllus. Science in China Series C-Life Science 50: 1-6.
[12]  Bargaz A, Faghire M, Farissi M, Drevon JJ, Ghoulam C (2013). Oxidative stress in the root nodules of Phaseolus vulgaris L. is induced under conditions of phosphorus deficiency. Acta Physiol. Plant. 35: 1633-1644.
[13]  Belane AK, Dakora FD (2009). Measurement of N2 fixation in 30 cowpea (Vigna unguiculata L. Walp.) genotypes under field conditions in Ghana using 15N natural abundance technique. Symbiosis 48: 47-57.
[14]  Buendia-Claveria AM, Rodriguez-Navaro DN, Santamaria-Linaza C, Ruiz-Sainz JE, Temprano-Vera F (1994). Evaluation of the symbiotic properties of Rhizobium fredii in European soils. Syst. Appl. Microbiol. 17: 155-160.
[15]  Cheriet D, Ouartsi A, Chekireb D, Babaarbi S (2014). Phenotypic and symbiotic characterization of rhizobia isolated from Medicago ciliaris L. growing in Zerizer from Algeria. Afr. J. Microbiol. Res. 8 (17): 1763-1778.
[16]  Ciani M, Diriye FU (1995). Presence of rhizobia in soils of Somalia. Worl J. Microbiol. Biotechnol. 11:615-617.
[17]  Costa, FM, Schiavo JA, Brasi MS, Leite J, Xavier GR, Fernandes-Jr PI (2014). Phenotypic and molecular fingerprinting of fast growing rhizobia of field-grown pigeonpea from the eastern edge of the Brazilian Pantanal. Genet. Mol. Res. 13 (1): 469-482.
[18]  Dakora FD, Muofhe LM (1997). Nitrogen fixation and nitrogen nutrition in symbiotic bambara groundnut (Vigna subterranean (L.)Verdc.) and Kerting’s bean (Macrotyloma geocarpum (Harms) Marech et Baud.). In Heller J, Begemann F, Mushonga J (Eds.) Bambara Groundnut Vigna Subterranea (L.) Verdc: Proceedings of the Workshop on Conservation and Improvement of Bambara Groundnut (Vigna Subterranea (L.) at Harare, Zimbabwe. Bioversity International, pp 72-77.
[19]  Dogbe W, Fening JO, Kumaga FWK, Danso SKA (2002). Maximizing the benefits of using mucuna on farmers’mixed farming. Trop. Sci. 42: 87-91.
[20]  Egbe OM, Godwin Adu Alhassan GA, Ijoyah M (2013). Nodulation, Nitrogen Yield and Fixation by Bambara Groundnut (Vigna Subterranea (L.)Verdc.) Landraces Intercropped with Cowpea and Maize in Southern Guinea Savanna of Nigeria. Agricultural Science 1: 15-28.
[21]  ElSheikh EAE, Wood M (1989) Response of chickpea and soybean rhizobia to salt: Influence of carbon source, temperature and pH. Soil Biol. Biochem. 21: 883-887.
[22]  Essendoubi M, Brhada F, Eljamali, JE, Filali-Maltouf A, Bonnassie S, Georgeault S, Blanco C, Jebbar M (2007). Osmoadaptative responses in the rhizobia nodulating acacia isolated from south-eastern Moroccan Sahara. Environ. Microbiol. 9 (3): 603-611.
[23]  Faghire M, Bargaz A, Farissi M, Palma F, Mandri B, Lluch C, Tejera García NA, Herrera-Cervera JA, Oufdou K, Ghoulam C (2011). Effect of salinity on nodulation, nitrogen fixation and growth of common bean (Phaseolus vulgaris) inoculated with rhizobial strains isolated from the Haouz region of Morocco. Symbiosis 55: 69-75.
[24]  Fankem H, Tchuisseu Tchakounte GV, Ngo Nkot L, Nguesseu Njanjouo G, Nwaga D, Etoa FX (2014a). Maize (Zea mays) growth promotion by rock-phosphate solubilising bacteria isolated from nutrient deficient soils of Cameroun. Afr. J. Microbiol. Res. 8 (40): 3770-3579.
[25]  Fankem H, Ngo Nkot L, Nguesseu Njanjouo G, Tchuisseu Tchakounte GV, Tchiaze Ifoué A V, Nwaga D (2014b). Rock phosphate solubilisation by strains of Penicillium spp. Isolated from farm and forest soils of three ecological zones of Cameroon. Am. J. Agric. For. 2 (2): 25-32.
[26]  Farissi M, Ghoulam C, Bouizgaren A (2013). Changes in water deficit saturation and photosynthetic pigments of alfalfa populations under salinity and assessment of proline role in salt tolerance. Agric. Sci. Res. J. 3: 29-35
[27]  Farissi M, Bouizgaren A, Aziz F, Faghire M, Ghoulam C (2014). Isolation and screening of rhizobial strains nodulating alfalfa for their tolerance to some environmental stresses. Pacesetter J. Agric Sci. Res. 2 (2): 9-19.
[28]  Fasoyiro SB, Ajibade SR, Omole AJ, Adeniyan ON, Farinde EO (2006). Proximate, minerals and anti-nutritional factors of some underutilized grain legumes in south western Nigeria. Nutr. Food Science 36: 18-23.
[29]  Fening JO, Danso SKA (2002). Variation in symbiotic effectiveness of cowpea bradyrhizobia indigenous to Ghanaian soils. Appl. Soil Ecol. 21: 23-29.
[30]  Fernandes-Jr PI, Lima AA, Passos SR, Gava CAT (2012). Phenotypic diversity and amylolytic activity of fast growing rhizobia from pigeonpea [Cajanus cajan (L.) Millsp.]. Braz. J. Microbiol. 43: 1604-1612.
[31]  Freitas ADS, Borges WL, Andrade MMM, Sampaio EVSB, Santos CERS, Passos SR, Xavier GR, Mulato BM, Lyra MCCP (2014). Characteristics of nodule bacteria from Mimosa spp grown in soils of the Brazilian semiarid region. Afr. J. Microbiol. Res. 8 (8): 788-796.
[32]  Hillocks RJ, Bennett C, Mponda OM (2012). Bambara nut: A review of utlisation, market potential and crop improvement. Afr. Crop Sci. J. 20 (1): 1-16.
[33]  Hungria M, Vargas MAT (2000). Environmental factors affecting nitrogen fixation in grain legumes in the tropics with an emphasis on Brazil. Field Crops Res. 65: 151-164.
[34]  Jida M, Assefa F (2011). Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil growing areas of Ethiopia. Afr. J. Microbiol. Res.5: 4133-4142.
[35]  Johnston AWB, Beringer JE (1976). Pea root nodules containing more than one Rhizobium species. Nature 264:502-504.
[36]  Jordan DC (1984). Family III. Rhizobiaceae. In: Krieg NR, Holt JG. (Eds.) Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore, pp 234-242.
[37]  Kishinevsky BD, Zur M, Friedman Y, Meromi G, Ben-Moshe E, Nemas C (1996). Variation in nitrogen fixation and yield in landraces of bambara groundnut (Vigna subterranea L.). Field Crop. Res. 48 (1): 57-64.
[38]  Klu GYP, Amoatey HM, Bansa D, Kumaeja FK (2001). Cultivation and use of African yam bean (Sphenostylis stenocarpa ex A Rich) in the Volta region of Chana. J. Food Technol. Africa 6: 74-77.
[39]  Kouninki H, Sobda G, Nukenine NE (2014). Screening of Bambara groundnut (Vigna subterranea) lines for Callosobruchus maculatus resistance in the Far North Region of Cameroon. Journal of Renewable Agriculture 2 (1): 18-22.
[40]  Küçük C, Kivanc M, Kinaci E (2006). Characterization of Rhizobium sp. Isolated from Bean. Turk. J. Biol. 30: 127-132.
[41]  Leite J, Seido SL, Passos SR, Xavier GR, Rumjanek NG, Martins LMV (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. R. Bras. Ci. Solo 33: 1215-1226.
[42]  Lyra MCCP, Freitas ADS, Silva TA, Santos CERS (2013). Phenotypic and molecular characteristics of rhizobia isolated from nodules of peanut (Arachis hypogaea L.) grown in Brazilian Spodosols. Afr. J. Biotechnol. 12: 2147-2156.
[43]  Maâtallah J, Berraho E, Sanjuan J, Lluch C (2002). Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccoan soils. Agronomie, 22: 321-329.
[44]  Mbenoun LE (1992). Characterization of Bradyrhizobium sp of cowpea and bambara groundnut isolated from diverse agro-ecologic zones of Cameroon. MSc. dissertation, University of Yaounde, 65 p.
[45]  Mbenoun LE (1992). Caractérisation de Bradyrhizobium sp. du niébé et du poids bambara isolés de diverses zones agroécologiques du Cameroun. Mémoire de maîtrise, Université de Yaoundé. 65 p.
[46]  Missbah El Idrissi M, Abdelmoumen H (2008). Carbohydrates as carbon sources in rhizobia under salt stress. Symbiosis 46: 33-44.
[47]  Mohale KC, Belane AK, Dakora FD (2014). Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc) grown in farmers fields in South Africa, measured using 15N and 13C natural abundance. Biol. Fertil. Soils 50: 307-319.
[48]  Mpepereki S, Makonese F, Wollum AG (1997). Physiological characterization of indigenous rhizobia nodulating Vigna unguiculata in Zimbabwean soils. Symbiosis 22: 275-292.
[49]  Muthini M, Maingi JM, Muoma JO, Amoding A, Mukaminega D, Osoro N, Mgutu A, Ombori O (2014). Morphological assessment and effectiveness of indigenous rhizobia isolates that nodulate P. vulgaris in water hyacinth compost testing field in Lake Victoria Basin. Br. J. Appl. Sci. Tech. 4 (5): 718-738.
[50]  Ndiang Z, Bell JM, Missoup AD, Fokam PE, AmougouAkoa (2012). Etude de la variabilité morphologique de quelques variétés de voandzou (Vigna subterranea (L.) Verdc) au Cameroun. Journal of Applied Biosciences 60: 4410-4420.
[51]  Ngakou A, Megueni C, Ousseni H, Massai A (2009). Study on the isolation and characterization of rhizobia strains as biofertilizer tools for growth improvement of four grain legumes in Ngaoundéré-Cameroon. Int. J. Biol. Sci. 3 (5): 1078-1089.
[52]  Ngakou A, Ngo Nkot L, Doloum G, Adamou S (2012). Mycorrhiza-Rhizobium-Vigna subterranea dual symbiosis: impact of microbial symbionts for growth and sustainable yield improvement. Int. J. Agric. & biol. 14 (6): 915-921.
[53]  Ngo Nkot L, Nwaga D, Ngakou A, Fankem H, Etoa FX (2011). Variation in nodulation and growth of groundnut (Arachis hypogaea L.) on oxisols from land use systems of the humid forest zone in southern Cameroon. African Journal of Biotechnology 10 (20): 3996-4004.
[54]  Nyemba RC, Dakora FD (2010). Evaluating N2 fixation by food grain legumes in farmers’ fields in the three agro-ecological zones of Zambia, using 15N natural abundance. Biol. Fertil. Soils 46:461-470.
[55]  Padulosi S, Hodgkin T, Williams JT, Haq N (2002). Underutilized crops: trends, challenges and opportunities in the 21st Century. In: JMM Engels, VR Rao, AHD Brown, MT Jackson (eds) Managing plant genetic diversity. Wallingford, UK: CAB International Publishing; Rome: International Plant Genetic Resources Institute (IPGRI), pp 323-338.
[56]  Pule-Meulenberg F, Dakora FD (2009) Assessing the symbiotic dependency of grain and tree legumes on N2 fixation for their N nutrition in five agro-ecological zones of Botswana. Symbiosis 48: 68-77.
[57]  Rai R, , , (2012). Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Indian J. Exp. Biol. 50: 340-350.
[58]  Rodrigues CS, Laranjo M, Oliveira S (2006). Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr. Microbiol. 53 (1): 1-7.
[59]  Shetta ND, Al-Shaharani TS, Abdel-Aal M (2011). Identification and characterization of Rhizobium associated with woody legume trees grown under Saudi Arabia condition. Am. Eurasian J. Agric. Environ. Sci. 10 (3): 410-418.
[60]  Singh SK, Jaiswal, SK, Akhouri Vaishampayan, Dhar B (2013). Physiological behavior and antibiotic response of soybean (Glycine max L.) nodulating rhizobia isolated from Indian soils. Afr. J. Microbiol. Res. 7 (19): 2093-2102.
[61]  Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Methods in Legume-Rhizobium Technology. New York: Springer-Verlag, pp 240-58.
[62]  Swift MJ, Bignell DE, Huang SP, Cares JE, Moreira F, Pereira EG, Nwaga D. Holt JA, Hauser S (2001). Standard methods for assessment of soil biodiversity and land use practice. In The ASA Review Meeting 1999, ASB Project, Bogor, Indonesia, ICRAF, Vol 1, 40 p.
[63]  The C (2000). Identification of heterotic groups for acids soil on some maize varieties in Cameroon. INCO 1 and 2 Meeting, June 2000. Yaoundé, Cameroon.
[64]  Torres-Júnior CV, Leite J, Santos CERS, Fernandes-Júnior PI, Zilli JE, Rumjanek NG, Xavier GR (2014). Diversity and symbiotic performance of peanut rhizobia from Southeast region of Brazil. Afr. J. Microbiol. Res. 8 (6): 566-577.
[65]  van Rossum D, Schuurmans FP, Gillis M, Muyotcha A, van Verseveld HW, Stotthamer AH, Boogerd FC (1995). Genetic and phenotypic analysis of Bradyrhizobium strains nodulating Peanut (Arachis hypogae L.) roots. Appl. Environ. Microbiol. 61: 1599-1609.
[66]  Vincent, JM (1970). A manual for practical study of root nodule bacteria. IBP Handbook No. 15, Blackwell Scientific Publishers, Oxford, 164p.
[67]  Vishal KD, Abhishek C (2014). Isolation and characterization of Rhizobium leguminosarum from root nodule of Pisum sativum L. J. Acad. Indus. Res. 2: 464-467.
[68]  Vriezen JAC, de Bruijn JF, Nusslein K (2007). Responses of rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Appl. Environ. Microbiol. 73: 3451-3459.
[69]  Wolde-Meskel, E., Berg T., Peters N.K. and Frostegard, A. 2004. Nodulation status of native woody legumes and phenotypic characteristics of associated Rhizobia in soils of southern Ethiopia. Biol. Fert. Soils. 40: 55-66.
[70]  Yakubu H, Kwari JD, Ngala AL (2010). N2 fixation by grain legume varieties as affected by rhizobia inoculation in the sandy loam soil of sudano-sahelian zone of North Eastern Nigeria. Nig. J. Basic Appl. Sci. 18 (2): 229-236. Yang JK, Xie FI, Zhou Q, Zhou JC (2005). Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea) in China. Soil Biol. Biochem. 37: 141-153.
[71]  Zabaloy MC, Gómez MA (2005). Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol. Fert Soils 42: 83-88.
[72]  Zahran HH (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63 (4): 968-989.
[73]  Zahran HH, Abdel-Fattah M, Yasser MM, Mahmoud AM, Bedmar EJ (2012). Diversity and environmental stress responses of rhizobial bacteria from Egyptian grain legumes. Aust. J. Bas. Appl. Sci. 6 (10): 571-583.