American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2015, 3(1), 25-32
DOI: 10.12691/ajmr-3-1-4
Open AccessArticle

Development of an in Vitro Novel Device that Simulates the Real Life of the Biofilm Formation on Catheters under both Static and Continuous Fluid Flow Systems

Mohamed El-Azizi1,

1Department of Microbiology, Immunology and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, GUC, New Cairo City, Egypt

Pub. Date: January 27, 2015

Cite this paper:
Mohamed El-Azizi. Development of an in Vitro Novel Device that Simulates the Real Life of the Biofilm Formation on Catheters under both Static and Continuous Fluid Flow Systems. American Journal of Microbiological Research. 2015; 3(1):25-32. doi: 10.12691/ajmr-3-1-4

Abstract

Biofilm model systems are essential to explore the development and the nature of the microbial community within the biofilm as well as the mechanism of their resistance. The aim of this work is to develop a simple in vitro novel device which mimics the real life of the biofilm formation and could be modulated to contain most catheter and tubes and readily allows biofilm formation under different experimental conditions. Two clinical isolates, Staphylococcus epidermidis and Candida albicans, were used to validate the device. The viability of the microorganisms within the biofilm was demonstrated quantitatively by viable count and semi-quantitively by using Scanning Electron Microscope and Confocal Scanning Laser Microscope. The shear stress on the inner and outer surfaces of the catheter was determined at different flow rates of the culture medium. The presented device supports biofilm formation of the tested microorganisms under static and dynamic fluid flow systems. The results are comparable to that of other biofilm models. The number of cells contained in the biofilm under static system was significantly higher than that of the biofilm which formed under dynamic system for both microorganisms. For S. epidermidis, the log value of the number of cells contained in the biofilm under static system was 6.41 ± 0.22 compared to 5.18 ±0.13 of the biofilm which formed under continuous fluid flow system (p < 0.001). For C. albicans, the log value of the number of adherent cells was 6.44 ± 38 and 5.47 ± 0.05 respectively (p = 0.012). The presented well suited to study the real life of the biofilm formation by microorganisms. It enables the formation of a reproducible biofilm of bacteria and yeast on the catheter surface in both static and dynamic systems and its design permits low laminar flow system.

Keywords:
In vitro biofilm model Continuous fluid flow Catheters Staphylococcus epidermidis Candida albicans laminar flow

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 6

References:

[1]  Prosser, P.L., Taylor, D., Dix B.A. and Cleeland, R, “Method of evaluating effects of antibiotics on bacterial biofilm,” Antimicrob Agents Chemother, 31(10). 1502-1506. Oct.1987.
 
[2]  El-Azizi, M., Rao, S., Kanchanapoom, T. and Khardori N, “In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci,” Ann Clin Microbiol Antimicrob, 4(2). Jan. 2005 [Online].
 
[3]  Johnson, G.M., Lee, D.A., Regelmann, W.E., Gray, E.D., Peters, G. and Quie, P.G, “Interference with granulocyte function by Staphylococcus epidermidis slime,” Infect Immun, 54(1). 13-20. Oct.1986.
 
[4]  Coenye, T. and Nelis, H.J, “In vitro and in vivo model systems to study microbial biofilm formation,” J Microbiol Methods, 83(2). 89-105. Nov.2010.
 
[5]  Pavarina, A.C., Dovigo, L.N., Sanita, P.V., Machada, A. L., Giampaolo, E.T. and Vergani, C.E, Biofilm formation: development and properties, Nova Science Publishers Inc., New York, 2011, 125-162.
 
[6]  Andes, D., Nett, J., Oschel, P., Albrecht, R., Marchillo, K. and Pitula, A, “Development and characterization of an in vivo central venous catheter Candida albicans biofilm model,” Infect Immun, 72(10). 6023-6031.Oct.2004
 
[7]  Freire, M.O., Sedghizadeh, P.P., Schaudinn, C., Gorur, A., Downey, J.S., Choi, J.H., Chen, W., Kook, J.K., Chen, C.,Goodman, S.D. and Zadeh, H.H, “Development of an animal model for Aggregatibacter Actinomycetemcomitans biofilm-mediated oral osteolytic infection: A preliminary study,” J Periodontol, 82(5). 778-789. May 2011.
 
[8]  Williams, D.L. and Costerton, J.W, “Using biofilms as initial inocula in animal models of biofilm-related infections,” J Biomed Mater Re, 100(4). 1163-1169.May 2012.
 
[9]  Harraghyi, N., Seiler, S., Jacobs, K., Hannig, M., Menger, M.D. and Herrmann, M, “Advances in in vitro and in vivo models for studying the staphylococcal factors involved in implant infections,” The International Journal of Artificial Organs, 29(4). 368-378. Apr. 2006.
 
[10]  Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F. and Melton, D.M, “Adherence of coagulase negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices,” J Clin Microbiol, 22(6). 996-1006. Dec. 1985.
 
[11]  Stepanovic, S., Vukovic, D., Dakic, I., Savic, B. and Svabic-Vlahovic, M, “A modified microtiter-plate test for quantification of staphylococcal biofilm formation,” J Microbiol Methods, 40(2). 175-179. Apr. 2000.
 
[12]  Mack, D., Siemssen, N. and Laufs, R, “Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: Evidence for functional relation to intercellular adhesion,” Infect. Immunol, 60(5). 2048-2057. May 1992.
 
[13]  McCoy, W.F., Bryers, J.D., Robbins, J. and Costerton, J.W, “Observations in fouling biofilm formation,” Can J Microbiol, 27 (9).910-917. Sep. 1981.
 
[14]  Leung K.P., Crowel, T.D., Abercrombie, I.J., Molina, C.M., Bradshaw, C.J., Jensen, C.L., Luo, Q. and Thompson, G.A, “Control of oral biofilm formation by an antimicrobial decapeptide,” J Dent Res, 2005, 84(12). 1172-77. Dec. 2005.
 
[15]  Chin, M.Y., Busscher, H.J., Evans, R., Noar, J. and Pratten, J, “Early biofilm formation and the effects of antimicrobial agent in orthodontic bonding materials in a parallel plate flow chamber,” Eur J Orthod, 28(1). 1-7. Feb.2006.
 
[16]  Rieu, A., Briandet, R., Habiana, O., Garmyn, D., Guzzo, J. and Piveteau, P, “Listeria monocytogenes EGD-e biofilms: no mushroom but a network of knitted chains,” Appl Environ Microbiol, 74(14). 4491-4497. Jul. 2008.
 
[17]  El-Azizi, M, “Enhancement of the in vitro activity of amphotericin B against the biofilms of non-albicans Candida spp. by rifampicin and doxycycline,” J Med Microbiol, 56(Pt5). 645-649. May 2007.
 
[18]  Marrie, J. and Casterton, W, “Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraatrial catheters,” J Clin Microbiol, 19(5). 687-693. May 1984.
 
[19]  Cengel, Y.A. and Cimbala, J.M, Fluid Mechanics: Fundamentals and Applications. 1st edition, McGraw Hill, New York, 2006, 322-325.
 
[20]  McBain, A.J, “In vitro biofilm models: An overview,” Adv Appl Microbiol, 69. 99-132. 2009.
 
[21]  Wenzel, R.P. and Edmond, M.B, “The impact of hospital-acquired bloodstream infections,” Emerg Infect Dis, 7(2). 174-177. March-Apr. 2001.
 
[22]  Eggimann, P., Sax, H. and Pittet, D, “Catheter-related infections,” Microbes Infect, 6(11).1033-1042. Sep. 2004.
 
[23]  Pittet, D, “Infection control and quality health care in the new millennium,” Am J Infect Control, 33(5). 258-267. Jun 2005.
 
[24]  Mermel, L.A, “Prevention of intravascular catheter-related infections,” Ann Intern Med, 132(5). 391-402. March 2000.
 
[25]  Darouiche, R.O, “Device-associated infections: a macroproblem that starts with microadherence,” Clin Infect Dis, 33(9). 1567-1572. Nov.2001.
 
[26]  O’ Gara, J.P. and Hmphreys, H, “Staphylococcus epidermidis biofilms: Importance and implications,” J Med Microbiol, 2001, 50(7). 582-587. Jul. 2001.
 
[27]  Huebner, J. and Goldmann, D.A, “Coagulase-negative staphylococci: role as pathogens,” Annu Rev Med, 50. 223-236. 1999.
 
[28]  Maki, D.G. and Tambyah, P.A, “Engineering out the risk of infection with urinary catheters,” Emerg Infect Dis, 7(2). 1-6. March-Apr. 2001.
 
[29]  Pappas, P.G., Rex, J.H., Sobel, J.D., Filler, S.G., Dismukes, D.E., Walsh, T.J. and Edwards, J.E, “Guidelines for treatment of candidiasis,” Clin Infect Dis, 38(2). 161-189. Jan. 2004.
 
[30]  Crnich C.J. and Maki, D.G, “The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short term devices,” Clin Infect Dis, 34(9) 1232-1242. May 2002.
 
[31]  El-Azizi, M., Starks, S. and Khardori, N, “Interactions of Candida albicans with other Candida species and bacteria in the biofilms,” J Apl Microbiol, 96(5). 1067-1073. 2004.
 
[32]  Busscher, H.J. and vand der Mei, H.C, “Use of flow chamber devices and image analysis methods to study microbial adhesion,” Methods Enzymol, 253. 455-477.1995
 
[33]  Lynch, R.J. and Ten Cate, J.M, “Effect of calcium glycerophosphate on demineralization in an in vitro biofilm model,” Caries Res, 40(2). 142-147. 2006.
 
[34]  Rosentritt, M., Hahnel, S., Groger, G., Muhlfriedel, B., Burgers, R. and Handel, G, “Adhesion of Streptococcus mutans to various dental materials in a laminar flow chamber system,” J Biomed Mater Res B Appl Biomater, 86(1). 36-44. Jul. 2008.
 
[35]  Xie, Q., Li, J. and Zhau, X, “Anticaries effect of compounds extracted from Galla chinensis in a multispecies biofilm model,” Oral Microbial Immunol, 23(6). 459-465. Dec. 2008.
 
[36]  Sjollema, J.H., Busscher, H.J. and Weer Kamp, A.H, “Deposition of oral Streptococci and polystyrene lattices onto glass in a parallel plate flow cell,” Biofouling, 1(2) 101-112. 1989
 
[37]  Christersson, C.E, Glantz, P.O. and Baier, R.E, “Role of temperature and shear forces on microbial detachment,” Scand. J Den Res, 96(2). 91-98. Apr. 1988.
 
[38]  Morisaki, H, “Measurement of the force necessary for removal of bacterial cells from aquartz plate,” Microbiol, 137. 2649-2655. 1991.