American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2014, 2(6), 224-226
DOI: 10.12691/ajmr-2-6-9
Open AccessArticle

Detection of Cryptosporidium oocyts in Commonly Consumed Fresh Salad Vegetables

Md. Jiaur Rahman1, Md. Aminul Islam Talukder2, Md. Farid Hossain1, Md. Sultan Mahomud3, M. Atikul Islam4 and Md. Shamsuzzoha4,

1Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

2Department of Agricultural chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

3Department of Food Engineering and Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

4Department of Chemistry, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

Pub. Date: December 23, 2014

Cite this paper:
Md. Jiaur Rahman, Md. Aminul Islam Talukder, Md. Farid Hossain, Md. Sultan Mahomud, M. Atikul Islam and Md. Shamsuzzoha. Detection of Cryptosporidium oocyts in Commonly Consumed Fresh Salad Vegetables. American Journal of Microbiological Research. 2014; 2(6):224-226. doi: 10.12691/ajmr-2-6-9


The aim of this study was to determine the degree of contamination caused by Cryptosporidium oocyts in regularly consumed salad vegetables sold at various wholesale and retail markets in northern part of Bangladesh. A total number of 165 samples of salad vegetables collected from different wholesale and retail markets were examined for detection of Cryptosporidium oocysts using sucrose flotation medium of 1.18 specific gravity and Ziehl Neelsen staining technique with some modifications. Cryptosporidium oocysts were detected in 47 (30%) of the total examined samples. About 40 Tomato, 35 Cucumber, 20 Lettuce, 35 Carrot and 35 Mint’s leaf samples were examined while Lettuce had the highest (40%) contamination rate followed by Tomato (32.5%), Carrot (31.4%), Cucumber (25.7%), and Mint’s leaf (22.8%). There was no significant difference (x2 = 2.278; p <0.05) among occurrences of Cryptosporidium oocysts in usually consumed salad vegetables sold at market. This study has shown that salad vegetables sold at wholesale and retail markets in northern part of Bangladesh are contaminated with Cryptosporidium oocysts, may pose a health risk to consumers of such products. This reveals food safety and significance of public health.

salad vegetables Cryptosporidium oocysts food safety northern Bangladesh

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Doaa EI Said Said (2012). Detection parasites in commonly consumed raw vegetables. Alexandria Journal of Medicine. 48, 345-352.
[2]  Van Duyn MA., Pivonka E. (2000). Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. J Am Diet Assoc 100 (12): 1511-21.
[3]  Ali M. Al-Bindi, Cornelius S. Bello, Khalid El-Shewy, Slah E. Abdulla, (2006). The prevalence of parasites in commonly used leafy vegetables in south western Saudi. Arabia, Saudi medical journal, vol. 27 (5), 613-616.
[4]  Slifko T.R., Smith HV., Rose JB. (2000). Emerging parasite zoonosps associated with water and food. International journal of paracytology, 30 (12-13): 1379-1393.
[5]  Ortega, Y. R., Roxas, C. R.., Gilman, R. H., Miller, N. J., Cabrera, L., and Taquiri, C. (1997). Isolation of Cryptosporidium parvum and Cyclosporacayetanensis from vegetables collected in markets of an endemic region in Peru. American Journal of Tropical Medicine and Hygiene, 57, 683-686.
[6]  Mintz, E. D., Hudson-Wragg, M., Meshar, P., Carter, M. L., & Hadler, J. L. (1993). Foodborne giardiasis in a corporated office setting. Journal of Infectious Diseases, 167, 250-253.
[7]  Amoah, P., Drechsel, P., Abaidoo, R. C., &Klutse, A. (2007). Effectiveness of common and improved sanitary washing methods in selected cities of West Africa for the reduction of coliform bacteria and helminth eggs on vegetables. Tropical Medicine and International Health, 12 (Suppl.), S40-S50.
[8]  Beuchat, L. R. (2002). Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes and Infection, 4, 413-423.
[9]  Simoes, M., Pisani, B., Marques, E. G. L., Prandi, M. A. G., Martini, M. H., Chiarini, P. F. T. (2001). Hygienic-sanitary conditions of vegetables and water from kitchen gardens in the Municipality of Campinas, SP. Brazilian Journal of Microbiology, 32, 331-333.
[10]  McEvoy, J.M., Moriaty, E.M., Duffy, G., & Sheridan, J.J.T. (2003). The National Food Centre, Ashtown, Dubling 15, Ireland.
[11]  Maikai, B.V., Baba-Onoja, E.B.T., and Elisha I.A. (2013). Contamination of Fresh Vegetables with Cryptosporidium oocysts in markets within Zaria metropolis, Kaduna State, Nigeria, Food Control, 31, 45-48.
[12]  Carreno, R.A., Martin, D.D., & Banta, J. R. (1999): Cryptosporidiosis is more closely related to the gregarines than coccidian as shown by phylogenetic analysis of apicomplexa parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitology Research 85 (11), 899-904.
[13]  Yoder, J.S., and Beach, M.J. (2007). Centers for disease control and Prevention (CDC). Cryptosporidiosis surveillance-United States, 2003-2005. MMWR Surveillance Submit, 56 (7), 1-10.
[14]  WHO (World Health Organization), (1990). Basic laboratory methods in medical parasitology. Geneva: World Health Organization.
[15]  Brondson MA. (1984). Rapid dimethyl modified acid fast stain of Cryptosporidium oocyst in stool specimens. J Clin Microbiol. 19: 952-5.
[16]  Monge, R., Chinchilla, M., and Reyes, l. (1996). Seasonality of parasites and intestinal bacteria in vegetables that are consumed raw in Cost Rica. Rivista de Biologia tropical, 44, 369-375.
[17]  Rose, J.B., and Smith, H.V. (1990): Waterborne Cryptosporidiosis. Parasitology today, 6, 8-12.
[18]  Damen JG., Sharif M., Ghorbani L., and Allanana JA. (2007). Parasitical contamination of vegetables in Jos. Nigeria Amn Afr Med. 6: 115-8.
[19]  Abougraina AK, Nahaisi MH, Madia NS, Saied MM, Ghengheshc KS. Parasitological contamination in salad vegetables in Tripoli – Libya. Iran Food Control 2010; 21: 760-2.