American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2014, 2(6), 217-223
DOI: 10.12691/ajmr-2-6-8
Open AccessArticle

Molecular Characterization and in Silico Analysis of a Novel Mutation in TEM-1 Beta-Lactamase Gene among Pathogenic E. coli infecting a Sudanese Patient

Hisham N Altayb1, , Nagwa M El Amin2, Maowia M. Mukhtar1, Mohamed Ahmed Salih3 and Mohamed A M Siddig4

1Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan

2Department of microbiology, Faculty of medicine, university of Khartoum, Sudan

3Head department of biotechnology, Biotechnology Park, Africa city of technology, Sudan

4Botany department, Faculty of Science, University of Khartoum, Sudan

Pub. Date: December 14, 2014

Cite this paper:
Hisham N Altayb, Nagwa M El Amin, Maowia M. Mukhtar, Mohamed Ahmed Salih and Mohamed A M Siddig. Molecular Characterization and in Silico Analysis of a Novel Mutation in TEM-1 Beta-Lactamase Gene among Pathogenic E. coli infecting a Sudanese Patient. American Journal of Microbiological Research. 2014; 2(6):217-223. doi: 10.12691/ajmr-2-6-8

Abstract

The presence of ESBLs in many E. coli strains are of serious concern, since these organisms are the most common cause of different human infections. In this study we isolate an E. coli bacterium with high hydrolytic activity against cefotaxime. The ESBLs production was confirmed by phenotypic confirmatory test, while the ESBLs genes were detected by polymerase chain reaction (PCR). This isolate was positive for TEM gene and negative for CTX-M and SHV genes. DNA sequencing was done for TEM gene. The nucleotide sequences and translated proteins were subjected to BLAST for sequences similarity and homology, BLASTp result revealed a substitution of aspartic acid in TEM-1(gb: AFI61435.1) to Threonine at position 262. In Silico tools was used for mutation analysis and prediction of secondary and tertiary structure of wild and mutant type genes. We conclude that our mutant gene is completely different from the wild types TEM-1 gene, within phenotypic and genotypic levels. So we conclude a novel mutant TEM gene with ESBLs activity is been detected in Sudan Phylogenetic tree revealed that the possible source of our gene is Iran.

Keywords:
E. coli ESBLs Novel TEM gene Insilco analysis Sudan

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Jacoby, G. A., and A. A. Medeiros (1991). More extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 35: 1697-1704.
 
[2]  Bush K (2001). New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clinical Infectious Diseases; 32 (7): 1085-9.
 
[3]  Bonnet R, De Champs C, Sirot D, Chanal C, Labia R, Sirot J. (1999). Diversity of TEM mutants in Proteus mirabilis. Antimicrob. Agents Chemother. 43: 2671-2677.
 
[4]  Datta, N., and P. Kontomichalou (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208: 239-241.
 
[5]  Brun-Buisson, C., P. Legrand, A. Philippon, F. Montravers, M. Ansquer,and J. Duval (1987). Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet ii: 302-306.
 
[6]  Sirot, D., J. Sirot, R. Labia, A. Morand, P. Courvalin, A. Darfeuille-Michaud, R. Perroux, and R. Cluzel (1987). Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J. Antimicrob. Chemother. 20: 323-334.
 
[7]  Medeiros AA (1997). Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clinical Infectious Diseases 1997; 24Suppl 1: S19-45.
 
[8]  MacFaddin JF (1980). Gram-Negative Enterobacteriaceae and other intestinal bacteria. In Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Vol. 32.
 
[9]  Clinical Laboratory Standard Institute; Wayne, Pennsylvania, USA: 2012. pp. 70–71.
 
[10]  Thomson KS, Sanders CC (1992). Detection of extended-spectrum β-lactamases in members of the family Enterobacteriaceae: Comparison of the double-disk and three-dimensional tests. Antimicrob. Agents Chemother. 36:1877-1882.
 
[11]  Alsadig G, Mohamed A.Arbab, Sawsan A. H. Aldeaf, Lamya A. Elhassan, Elshibli Elshibli, Ahmed M. Elhassan (2014). Allele Frequency Of P53 Gene Arg72Pro In Sudanese Meningioma Patients And Controls. In.J. of SCIENTIFIC & TECHNOLOGY RES. 2014; 3 (6): 2277-8616.
 
[12]  Cao, V., Lambert, T. & Courvalin, P (2002). ColE1-like plasmid pIP843 of Klebsiella pneumoniae encoding extended-spectrum ß-lactamases CTX-M-17. Antimicrob Agents Chemother 46, 1212-1217.
 
[13]  Atschul SF, Madden TL, Schaffer AA et al. (1997). Gapped BLAST and PSI-BLAST. A new generation of protein database search programmes”. NucleicAcid Res 25: 3389-3402.
 
[14]  Hall TA (1999). “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT”. Nucl. Acids. Symp. Ser. 41: 95-98.
 
[15]  John Besemer, AlexandreLomsadze and Mark Borodovsky (2001). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions”. Nucleic Acids Research 29: 2607-2618.
 
[16]  McWilliam H, Li W, Uludag M (2013). Analysis Tool Web Services from the EMBL-EBI” Nucleic acids research: 41(Web Server issue): W597-600.
 
[17]  Kelley LA, Sternberg MJE (2009). Protein structure prediction on the web: a case study using the Phyre server” Nature Protocols 4, 363-371.
 
[18]  Huang CC, Meng EC, Morris JH, et al. (2014), “Enhancing UCSF Chimera through web.” Nucleic Acids Res: 42(Web Server issue): W478-84.
 
[19]  An e-Science approach with life scientist friendly interfaces (2010). “Protein structure analysis of mutations causing inheritable diseases” BMC Bioinformatics. 8; 11(1): 548; PMID: 21059217. Sites in protein structures”. J MolBiol: 339(3): 607-33.
 
[20]  Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A (2005). Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press.
 
[21]  Canton, R., M. I. Morosini, O. M. de la Maza, and E. G. de la Pedrosa. (2008). IRT and CMT beta-lactamases and inhibitor resistance. Clin. Microbiol. Infect.14(Suppl.1): 53-62.
 
[22]  Robin, F., J. Delmas, C. Schweitzer, O. Tournilhac, O. Lesens, C. Chanal,and R. Bonnet (2007). Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient. Antimicrob. Agents Chemother. 51: 1304-1309.
 
[23]  Mekki A H, Hassan A N, Elsayed D M (2010). Extended Spectrum Beta Lactamases among Multi Drug Resistant Escherichia Coli and Klebsiella Species Causing Urinary Tract Infections in Khartoum. J Bact Res.2010; 2(3): 18-21.
 
[24]  Omar BA, Alfadel OO, Atif HA, Mogahid ME (2013). Prevalence of TEM, SHV and CTX-M genes in Escherichia coli and Klebsiella spp Urinary Isolates from Sudan with confirmed ESBL phenotype, Life Science Journal 2013; 10(2) http://www.lifesciencesite.com.
 
[25]  Abdelmoneim Awad, Idris Eltayeb, Lloyd Matowe, Lukman Thalib (2005). Self medication with Antibiotics and Anti-malarial in the community of Khartoum State, Sudan. J Pharm Pharmaceut Sc. 2005; 8(2): 326-331.
 
[26]  Hamedelnil, F.Y, Eltayeb, H.N (2012). Molecular detection of Extended Spectrum β-lactamases (ESBLs) genes in E. coli isolated from urine specimens. Int J of advanced and scientific research October, 2012, ISSN 2249-9954.
 
[27]  Sougakoff, W., S. Goussard, G. Gerbaud, and P. Courvalin (1988). Plasmid-mediated resistance to third-generation cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev. Infect. Dis. 10: 879-884.
 
[28]  Lautenbach, E., J. B. Patel, W. B. Bilker, P. H. Edelstein, and N. O.Fishman (2001). Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin. Infect. Dis. 32: 1162-1171.
 
[29]  Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 234-258.
 
[30]  Paterson DL, Ko WC, Gottberg V, Casellas JM, Mulazimoglu L,Klugman KP. (2001). Outcome of cephalosporin treatment for serious infections due to apparently susceptible organism producing extended spectrum beta-lactamasees: Implications for clinical microbiology laboratory. J Clin Microbiol 2001; 39: 2206-12.
 
[31]  Barthélémy M, Péduzzi J, Labia R. (1985). Distinction entre les structures primaires des β-lactamases TEM-1 et TEM-2. Ann Inst Pasteur Microbiol. 1985; 136A: 311-321.
 
[32]  Sagermann M, Baase WA, Matthews BW. (2006). Sequential reorganization of b-sheet topology by insertion of a single strand. Protein Sci 15: 1085-1092.