American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2014, 2(5), 157-165
DOI: 10.12691/ajmr-2-5-6
Open AccessArticle

Exploited Application of Pyrosequencing in Microbial Diversity of Activated Sludge System of Common Effluent Treatment Plants

M. P. Shah1,

1Industrial Waste Water Research Laboratory Division of Applied & Environmental Microbiology Enviro Technology Limited Gujarat, India

Pub. Date: October 13, 2014

Cite this paper:
M. P. Shah. Exploited Application of Pyrosequencing in Microbial Diversity of Activated Sludge System of Common Effluent Treatment Plants. American Journal of Microbiological Research. 2014; 2(5):157-165. doi: 10.12691/ajmr-2-5-6

Abstract

Microbial Communities are actively present in the Activated Sludge System. We have applied PCR-based Pyrosequencing to investigate the bacterial communities of Activated Sludge samples from different common effluent treatment plants. A total of 259K effective sequences of 16S rRNA gene V4 region were obtained from these Activated Sludge samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in Activated Sludge, that is, 1183–3567 OTUs in a sludge sample, at 3% cutoff level and sequencing depth of 16 489 sequences. Clear geographical differences among the Activated Sludge samples from effluent treatment Plant No.1 and No.2 were revealed by (1) cluster analyses based on abundances of OTUs or the genus/family/order assigned by Ribosomal Database Project (RDP) and (2) the principal coordinate analyses based on OTUs abundances, RDP taxa abundances and UniFrac of OTUs and their distances. In addition to certain unique bacterial populations in each Activated Sludge sample, some genera were dominant, and core populations shared by multiple samples, including two commonly reported genera of Zoogloea and Dechloromonas, three genera not frequently reported and three genera not well described so far. Pyrosequencing analyses of multiple Activated Sludge samples in this study also revealed the minority populations that are hard to be explored by traditional molecular methods and showed that a large proportion of sequences could not be assigned to taxonomic affiliations even at the phylum/class levels.

Keywords:
pyrosequencing activated sludge bacteria cluster analysis PCoA

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Bibby K, Viau E, Peccia J. (2010). Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res 44: 4252-4260.
 
[2]  Claesson M, O’Sullivan O, Wang Q, Nikkila J, Marchesi J, Smidt H et al. (2009). Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PloS One 4: e6669.
 
[3]  Claesson M, O’Sullivan O, Wang Q, Nikkila J, Marchesi J, Smidt H et al. (2009). Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PloS One 4: e6669.
 
[4]  Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141-D145.
 
[5]  Dugan PR, Stoner DL, Pickrum HM. (1992). The genus Zoogloea. In: The prokaryotes. Balows A, Tru¨ per HG, Dworkin M, Harder W, Schleifer K-H (eds). Springer-Verlag: New York, NY, pp 3952-3964.
 
[6]  Fierer N, Hamady M, Lauber CL, Knight R. (2008). The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 105: 17994.
 
[7]  Fodor AA, Sanapareddy N, Hamp TJ, Gonzalez LC, Hilger HA, and Clinton SM. 2009. Molecular Diversity of a North Carolina Wastewater Treatment Plant as Revealed by Pyrosequencing. Appl. Environ. Microb. 75: 1688-1696.
 
[8]  Gilbride KA, Lee DY, and Beaudette LA. 2006. Molecular techniques in wastewater: Understanding microbial communities, detecting pathogens, and real-time process control. J. Microbiol. Meth. 66: 1-20.
 
[9]  Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G et al. (2011). Chimeric 16S Rrna sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21: 494-504.
 
[10]  Hamady M, Lozupone C, Knight R. (2010). Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of Pyrosequencing and PhyloChip data. ISME J 4: 17-27.
 
[11]  He Z, Van Nostrand JD, Deng Y, and Zhou J. 2011. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Front. Environ. Sci. Engin. China 5:1-20.
 
[12]  Huse SM, Welch DM, Morrison HG, Sogin ML. (2010). Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12: 1889-1898.
 
[13]  Jesus EC, Susilawati E, Smith S, Wang Q, Chai B, Farris R et al. (2010). Bacterial communities in the rhizosphere of biofuel crops grown on marginal lands as evaluated by 16S rRNA gene pyrosequences. BioEnergy Res 3:20-27.
 
[14]  Lauber CL, Hamady M, Knight R, Fierer N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75: 5111.
 
[15]  Lozupone CA, Knight R. (2005). Unifrac: A new phylogenetic method for comparing microbial communities. Appl Envrion Microbiol 71: 8228-8235.
 
[16]  Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, de Winter A, Drake J, Du L, Fierro JM, Forte R, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Hutchison SK, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lee WL, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Reifler M, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Willoughby DA, Yu PG, Begley RF, and Rothberg JM. 2006. Genome sequencing in microfabricated high-density picolitre reactors. Nature 441:120-120.
 
[17]  Maulin P Shah, Patel KA, Nair SS, Darji AM, Shaktisinh Maharaul. Optimization of Environmental Parameters on Decolorization of Remazol Black B Using Mixed Culture. American Journal of Microbiological Research. 2013 (1), 3, 53-56
 
[18]  Maulin P Shah, Patel KA, Nair SS, Darji AM. Microbial Decolorization of Methyl Orange Dye by Pseudomonas spp. ETL-M. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 2, 54-59
 
[19]  Maulin P Shah, Patel KA, Nair SS, Darji AM. Microbial Degradation and Decolorization of Reactive Orange Dye by Strain of Pseudomonas Spp. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 1, 1-5
 
[20]  Maulin P Shah, Patel KA, Nair SS, Darji AM. An Innovative Approach to Biodegradation of Textile Dye (Remazol Black) by Bacillus spp. International Journal of Environmental Bioremediation and Biodegradation. 2013 (1), 2, 43-48
 
[21]  McLellan S, Huse S, Mueller Spitz S, Andreishcheva E, Sogin M. (2010). Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12: 378-392.
 
[22]  McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, and Sogin ML.2010. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ. Microbiol. 12: 1376-1376.
 
[23]  Murphy E, Cotter P, Healy S, Marques T, O’Sullivan O, Fouhy F et al. (2010). Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59:1635-1642.
 
[24]  Nawrocki EP, Eddy SR. (2007). Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 3: e56.
 
[25]  Palacios L, Arahal D, Reguera B, Marin I. (2006). Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int J Syst Evol Microbiol 56: 1991.
 
[26]  Park J, Lee TK, Doan TV, Yoo K, Choi S, and Kim C. 2010. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Appl. Microbiol. Biot. 87: 2335-2343.
 
[27]  Peccia J, Bibby K, and Viau E. 2010. Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. Water Res. 44: 4252-4260.
 
[28]  Qian P, Wang Y, Lee O, Lau S, Yang J, Lafi F et al. (2010). Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J 5: 507-518.
 
[29]  Qian P, Wang Y, Lee O, Lau S, Yang J, Lafi F et al. (2010). Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J 5: 507-518.
 
[30]  Qian PY, Wang Y, Lee OO, Lau SCK, Yang JK, Lafi FF, Al-Suwailem A, and \ Wong TYH. 2011. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME. J. 5: 507-518.
 
[31]  Qin J, Li R, Raes J, ArumugamM,BurgdorfKS, Manichanh C et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65.
 
[32]  Roesch L, Fulthorpe R, Riva A, Casella G, Hadwin A, Kent A et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1: 283-290.
 
[33]  Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K et al. (2011). Evidence for a core gut microbiota in the zebrafish. ISME J 5: 1595-1608.
 
[34]  Rossello-Mora R,Wagner M, Amann R, Schleifer K. (1995). The abundance of Zoogloea ramigera in sewage treatment plants. Appl Environ Microbiol 61: 702.
 
[35]  Shendure J, Ji H. (2008). Next-generation DNA sequencing.Nat Biotechnol 26: 1135-1145.
 
[36]  Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63: 2884-2896.
 
[37]  Sogin M, Morrison H, Huber J, Welch D, Huse S, Neal P et al. (2006). Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Nat Acad Sci 103: 12115.
 
[38]  Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, and Herndl GJ. 2006. Microbial diversity in the deep sea and the underexplored "rare biosphere". Proc. Natl. Acad. Sci. USA. 103: 12115-12120.
 
[39]  Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74.
 
[40]  Wang Q, Garrity G, Tiedje J, Cole J. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267.
 
[41]  Xia S, Duan L, Song Y, Li J, Piceno Y, Andersen G et al. (2010). Bacterial community structure in geographically distributed biological wastewater treatment reactors. Environ Sci Technol 44: 1043-1045.
 
[42]  Xia SQ, Duan LA, Song YH, Li JX, Piceno YM, Andersen GL, Alvarez-Cohen L, Moreno-Andrade I, Huang CL, and Hermanowicz SW. 2010. Bacterial Community Structure in Geographically Distributed Biological Wastewater Treatment Reactors. Environ. Sci. Technol. 44: 7391-7396.
 
[43]  Yoon DN, Park SJ, Kim SJ, Jeon CO, Chae JC, Rhee SK. (2010). Isolation, characterization, and abundance of filamentous members of Caldilineae in activated sludge. J Microbiol 48: 275-283.
 
[44]  Zhang T, Shao MF, and Ye L. 2012. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME. J. 6: 1137-1147.