American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2014, 2(4), 118-121
DOI: 10.12691/ajmr-2-4-3
Open AccessArticle

Biotic Relationships: Distribution of Antibiotic Resistance Genes in Nosocomial Pathogens

Tejpreet Chadha1,

1Department of Biological & Environmental Sciences, Troy University, Troy, AL 36082

Pub. Date: July 13, 2014

Cite this paper:
Tejpreet Chadha. Biotic Relationships: Distribution of Antibiotic Resistance Genes in Nosocomial Pathogens. American Journal of Microbiological Research. 2014; 2(4):118-121. doi: 10.12691/ajmr-2-4-3

Abstract

The strong selective pressure exerted by excessive use of antibiotics in the last decades has increased the acquisition of resistance genes by horizontal gene transfer. Horizontal gene transfer contributed to the diversification of microorganisms by influencing traits such as metabolic potential of a bacterial cell, antibiotic resistance, symbiosis, fitness, and adaptation. The study of biotic relationships helped to examine how they may contribute to virulence such as transfer of toxin genes, antibiotic resistance genes. The current study examines the pattern of distribution of Ambler (molecular) classes of β-lactamases (A, B, C, D) that provides a basic understanding and an initial assessment of resistance genes that may have a different role in the natural environment in free living and symbiotic nosocomial pathogens. The distribution of the four different Ambler (molecular) classes of β-lactamases (A, B, C, and D) differs among different bacterial species. The results from absolute abundance data showed prevalence of class B β-lactamases was highest in free living and lowest in symbiotic bacterial species. Interestingly, class D β-lactamases was absent in symbiotic bacterial species. However, relative abundance class D β-lactamases was lowest for free-living bacterial species. The prevalence of class B β-lactamases based upon the total number of sequences checked predominated in pathogens that are free living when compared to other Ambler classes of β-lactamases. The study of biotic relationships helps to understand what selective or stimulatory pressures are driving the spread of antibiotic resistance genes. In the future, this may help to design effective strategies for preventing further increases in the incidence of antibiotic-resistant bacteria.

Keywords:
β-lactamases symbiotic bacteria free living bacteria antibiotic resistance genes

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Davies, J. and D. Davies, Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010. 74(3): p. 417-33.
 
[2]  Martinez, J.L., et al., A global view of antibiotic resistance. FEMS Microbiol Rev, 2009. 33(1): p. 44-65.
 
[3]  Martinez, J.L., F. Baquero, and D.I. Andersson, Predicting antibiotic resistance. Nature Reviews Microbiology, 2007. 5(12): p. 958-965.
 
[4]  Chadha, T., Antibiotic Resistant Genes in Natural Environment. Agrotechnol, 2012. 1.
 
[5]  Allen, H.K., et al., Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol, 2010. 8(4): p. 251-9.
 
[6]  Aminov, R.I., The role of antibiotics and antibiotic resistance in nature. Environ Microbiol, 2009. 11(12): p. 2970-88.
 
[7]  Petty, N.K., et al., Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A, 2014. 111(15): p. 5694-9.
 
[8]  Amos, G.C., et al., Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J Antimicrob Chemother, 2014. 69(7): p. 1785-91.
 
[9]  Marshall, C.G., et al., D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc Natl Acad Sci U S A, 1997. 94(12): p. 6480-3.
 
[10]  Lomovskaya, O. and K. Lewis, Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A, 1992. 89(19): p. 8938-42.
 
[11]  Gupta, V., An update on newer beta-lactamases. Indian J Med Res, 2007. 126(5): p. 417-27.
 
[12]  Pitout, J.D., et al., Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother, 2005. 56(1): p. 52-9.
 
[13]  Hall, B.G. and M. Barlow, Evolution of the serine beta-lactamases: past, present and future. Drug Resist Updat, 2004. 7(2): p. 111-23.
 
[14]  Abraham, E.P., A retrospective view of beta-lactamases. J Chemother, 1991. 3(2): p. 67-74.
 
[15]  Meroueh, S.O., et al., Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. J Am Chem Soc, 2003. 125(32): p. 9612-8.
 
[16]  Martinez, J.L., The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci, 2009. 276(1667): p. 2521-30.
 
[17]  Martinez, J.L., Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut, 2009. 157(11): p. 2893-902.
 
[18]  D'Costa, V.M., et al., Sampling the antibiotic resistome. Science, 2006. 311(5759): p. 374-7.
 
[19]  Jechalke, S., et al., Fate and effects of veterinary antibiotics in soil. Trends Microbiol, 2014.
 
[20]  Peirano, G., et al., New Delhi Metallo-beta-Lactamase from Traveler Returning to Canada. Emerging Infectious Diseases, 2011. 17(2): p. 242-244.
 
[21]  Lode, H., Management of serious nosocomial bacterial infections: do current therapeutic options meet the need? Clin Microbiol Infect, 2005. 11(10): p. 778-87.
 
[22]  Ahoyo, T.A., et al., Prevalence of nosocomial infections and anti-infective therapy in Benin: results of the first nationwide survey in 2012. Antimicrob Resist Infect Control, 2014. 3: p. 17.
 
[23]  Zhang, S., et al., Bacteriology and drug susceptibility analysis of pus from patients with severe intra-abdominal infection induced by abdominal trauma. Exp Ther Med, 2014. 7(5): p. 1427-1431.
 
[24]  Wayenberg, L., et al., [Urinary tract infection with Escherichia coli producing extended-spectrum β-lactamase in a traveler returning from Southeast Asia]. Bull Soc Pathol Exot, 2013. 106(1): p. 1-4.
 
[25]  Canizalez-Roman, A., et al., Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int J Food Microbiol, 2013. 164(1): p. 36-45.
 
[26]  Toroglu, S., H. Avan, and D. Keskin, Beta-lactamases production and antimicrobial resistance ratio of Pseudomonas aeruginosa from hospitalized patients in Kahramanmaras, Turkey. J Environ Biol, 2013. 34(4): p. 695-700.
 
[27]  Ambler, R.P., The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci, 1980. 289(1036): p. 321-31.
 
[28]  Bush, K. and G.A. Jacoby, Updated functional classification of beta-lactamases. Antimicrob Agents Chemother, 2010. 54(3): p. 969-76.
 
[29]  Rice, L.B., Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis, 2008. 197(8): p. 1079-81.
 
[30]  Federhen, S., The NCBI Taxonomy database. Nucleic Acids Res, 2012. 40(Database issue): p. D136-43.
 
[31]  Jayaraman, R., Novel mechanisms of emergence of multidrug resistance/tolerance. Current Science, 2010. 99(8): p. 1008-1010.
 
[32]  Jacoby, G.A., AmpC beta-lactamases. Clin Microbiol Rev, 2009. 22(1): p. 161-82, Table of Contents.
 
[33]  Bauernfeind, A., Y. Chong, and K. Lee, Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J, 1998. 39(6): p. 520-5.
 
[34]  Hall, B.G. and M. Barlow, Structure-based phylogenies of the serine beta-lactamases. J Mol Evol, 2003. 57(3): p. 255-60.
 
[35]  Naas, T. and P. Nordmann, OXA-type beta-lactamases. Curr Pharm Des, 1999. 5(11): p. 865-79.
 
[36]  Hall, B.G., S.J. Salipante, and M. Barlow, The metallo-beta-lactamases fall into two distinct phylogenetic groups. J Mol Evol, 2003. 57(3): p. 249-54.
 
[37]  Walsh, T.R., et al., Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev, 2005. 18(2): p. 306-25.
 
[38]  Payne, D.J., Metallo-beta-lactamases--a new therapeutic challenge. J Med Microbiol, 1993. 39(2): p. 93-9.
 
[39]  Hudson, C.M., et al., Resistance Determinants and Mobile Genetic Elements of an NDM-1-Encoding Klebsiella pneumoniae Strain. PLoS One, 2014. 9(6): p. e99209.