[1] | Davies, J. and D. Davies, Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev, 2010. 74(3): p. 417-33. |
|
[2] | Martinez, J.L., et al., A global view of antibiotic resistance. FEMS Microbiol Rev, 2009. 33(1): p. 44-65. |
|
[3] | Martinez, J.L., F. Baquero, and D.I. Andersson, Predicting antibiotic resistance. Nature Reviews Microbiology, 2007. 5(12): p. 958-965. |
|
[4] | Chadha, T., Antibiotic Resistant Genes in Natural Environment. Agrotechnol, 2012. 1. |
|
[5] | Allen, H.K., et al., Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol, 2010. 8(4): p. 251-9. |
|
[6] | Aminov, R.I., The role of antibiotics and antibiotic resistance in nature. Environ Microbiol, 2009. 11(12): p. 2970-88. |
|
[7] | Petty, N.K., et al., Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A, 2014. 111(15): p. 5694-9. |
|
[8] | Amos, G.C., et al., Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J Antimicrob Chemother, 2014. 69(7): p. 1785-91. |
|
[9] | Marshall, C.G., et al., D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc Natl Acad Sci U S A, 1997. 94(12): p. 6480-3. |
|
[10] | Lomovskaya, O. and K. Lewis, Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A, 1992. 89(19): p. 8938-42. |
|
[11] | Gupta, V., An update on newer beta-lactamases. Indian J Med Res, 2007. 126(5): p. 417-27. |
|
[12] | Pitout, J.D., et al., Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J Antimicrob Chemother, 2005. 56(1): p. 52-9. |
|
[13] | Hall, B.G. and M. Barlow, Evolution of the serine beta-lactamases: past, present and future. Drug Resist Updat, 2004. 7(2): p. 111-23. |
|
[14] | Abraham, E.P., A retrospective view of beta-lactamases. J Chemother, 1991. 3(2): p. 67-74. |
|
[15] | Meroueh, S.O., et al., Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. J Am Chem Soc, 2003. 125(32): p. 9612-8. |
|
[16] | Martinez, J.L., The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci, 2009. 276(1667): p. 2521-30. |
|
[17] | Martinez, J.L., Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut, 2009. 157(11): p. 2893-902. |
|
[18] | D'Costa, V.M., et al., Sampling the antibiotic resistome. Science, 2006. 311(5759): p. 374-7. |
|
[19] | Jechalke, S., et al., Fate and effects of veterinary antibiotics in soil. Trends Microbiol, 2014. |
|
[20] | Peirano, G., et al., New Delhi Metallo-beta-Lactamase from Traveler Returning to Canada. Emerging Infectious Diseases, 2011. 17(2): p. 242-244. |
|
[21] | Lode, H., Management of serious nosocomial bacterial infections: do current therapeutic options meet the need? Clin Microbiol Infect, 2005. 11(10): p. 778-87. |
|
[22] | Ahoyo, T.A., et al., Prevalence of nosocomial infections and anti-infective therapy in Benin: results of the first nationwide survey in 2012. Antimicrob Resist Infect Control, 2014. 3: p. 17. |
|
[23] | Zhang, S., et al., Bacteriology and drug susceptibility analysis of pus from patients with severe intra-abdominal infection induced by abdominal trauma. Exp Ther Med, 2014. 7(5): p. 1427-1431. |
|
[24] | Wayenberg, L., et al., [Urinary tract infection with Escherichia coli producing extended-spectrum β-lactamase in a traveler returning from Southeast Asia]. Bull Soc Pathol Exot, 2013. 106(1): p. 1-4. |
|
[25] | Canizalez-Roman, A., et al., Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int J Food Microbiol, 2013. 164(1): p. 36-45. |
|
[26] | Toroglu, S., H. Avan, and D. Keskin, Beta-lactamases production and antimicrobial resistance ratio of Pseudomonas aeruginosa from hospitalized patients in Kahramanmaras, Turkey. J Environ Biol, 2013. 34(4): p. 695-700. |
|
[27] | Ambler, R.P., The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci, 1980. 289(1036): p. 321-31. |
|
[28] | Bush, K. and G.A. Jacoby, Updated functional classification of beta-lactamases. Antimicrob Agents Chemother, 2010. 54(3): p. 969-76. |
|
[29] | Rice, L.B., Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis, 2008. 197(8): p. 1079-81. |
|
[30] | Federhen, S., The NCBI Taxonomy database. Nucleic Acids Res, 2012. 40(Database issue): p. D136-43. |
|
[31] | Jayaraman, R., Novel mechanisms of emergence of multidrug resistance/tolerance. Current Science, 2010. 99(8): p. 1008-1010. |
|
[32] | Jacoby, G.A., AmpC beta-lactamases. Clin Microbiol Rev, 2009. 22(1): p. 161-82, Table of Contents. |
|
[33] | Bauernfeind, A., Y. Chong, and K. Lee, Plasmid-encoded AmpC beta-lactamases: how far have we gone 10 years after the discovery? Yonsei Med J, 1998. 39(6): p. 520-5. |
|
[34] | Hall, B.G. and M. Barlow, Structure-based phylogenies of the serine beta-lactamases. J Mol Evol, 2003. 57(3): p. 255-60. |
|
[35] | Naas, T. and P. Nordmann, OXA-type beta-lactamases. Curr Pharm Des, 1999. 5(11): p. 865-79. |
|
[36] | Hall, B.G., S.J. Salipante, and M. Barlow, The metallo-beta-lactamases fall into two distinct phylogenetic groups. J Mol Evol, 2003. 57(3): p. 249-54. |
|
[37] | Walsh, T.R., et al., Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev, 2005. 18(2): p. 306-25. |
|
[38] | Payne, D.J., Metallo-beta-lactamases--a new therapeutic challenge. J Med Microbiol, 1993. 39(2): p. 93-9. |
|
[39] | Hudson, C.M., et al., Resistance Determinants and Mobile Genetic Elements of an NDM-1-Encoding Klebsiella pneumoniae Strain. PLoS One, 2014. 9(6): p. e99209. |
|