American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: http://www.sciepub.com/journal/ajmr Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Microbiological Research. 2013, 1(2), 32-38
DOI: 10.12691/ajmr-1-2-4
Open AccessArticle

Biodegradation of the Synthetic Pyrethroid, Fenvalerate by Pseudomonas viridiflava

A. Deborah Gnana Selvam, A.J. Thatheyus, and R. Vidhya

Pub. Date: April 06, 2013

Cite this paper:
A. Deborah Gnana Selvam, A.J. Thatheyus and R. Vidhya. Biodegradation of the Synthetic Pyrethroid, Fenvalerate by Pseudomonas viridiflava. American Journal of Microbiological Research. 2013; 1(2):32-38. doi: 10.12691/ajmr-1-2-4

Abstract

A current environmental concern is the contamination of aquatic ecosystems due to pesticide discharges from manufacturing plant, agricultural runoff, leaching, accidental spills and other sources. The degradation of synthetic pyrethroids in the environment is an important index in the evaluation of ecological risk of pesticides. Microorganisms play a significant role in detoxifying pesticides in the environment. There are few reports on the degradation of pyrethroid insecticides in soils. This study may provide basis for prevention and control of synthetic pyrethroid, fenvalerate pollution. The present study investigated the potential of the chosen bacterium, a natural isolate Pseudomonas viridiflava isolated from an agricultural field and its degradation efficiency was evaluated by the assessment of various parameters like pH, carbon dioxide, turbidity and esterase activity during the long term and short term degradation process. HPLC analysis revealed that the peaks with different retention time and disappearance of several peaks confirm the degradation of fenvalerate by P. viridiflava. These findings suggest that the utilization of fenvalerate by P .viridiflava may be a feasible treatment option for the removal of pesticides from soil environment.

Keywords:
pesticide pyrethroid fenvalerate P.viridiflava HPLC

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 12

References:

[1]  Shukla, K.P., Nand Kumar Singh, N. K. and Sharma, S., “Bioremediation: Developments, Current Practices and Perspectives”, Genetic Engineering and Biotechnology Journal. 2010.
 
[2]  Damalas, C. A., “Understanding benefits and risks of pesticide use”, Scientific Research and Essay, 4(10). 945-949. 2009.
 
[3]  CICOPLAFEST, Catalogo Oficial de Plaguicidas. Comisión Intersecretarial para el Control de Proceso y Uso de plaguicidas, Fertilizantes y Sustancias Tóxicas. SAGARPA, SEDESOL, México, D. F. pp.481. 2004.
 
[4]  Gamón, M., Saez, E., Gil, J. and Boluda, R., “Direct and indirect exogenous contamination by pesticides of rice-farming soils in a Mediterranean wetland”, Arch. Environ. Contam. Toxicol, 44. 141-151. 2003.
 
[5]  Shalaby, E.M., and Abdou, G.Y, “The influence of soil microorganisms and bio- or - organic fertilizers on dissipation of some pesticides in soil and potato tube”, Journal of Plant Protection Research, 50 (1). 86-92. 2010.
 
[6]  Lichtinger, W.V., Arriaga, B.R. E., and Bolaños-Cacho, R. J. A, Bases de la política para la prevención de la contaminación del suelo y su remediación. SEMARNAT. México, D.F. 5-65. 2001.
 
[7]  Karstensen, K.H., Nguyen, K.K., Le, B.T., Pham, H.V., Nguyen, D.T., Doan,T.T., Tao,M.Q., and Doan,H.T, “Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns”, Environmental science and policy, 9(6). 577-586. 2006.
 
[8]  Araya, M., and Lakhi, A., “Response to consecutive nematicide application using the same product in Musa AAA cv. Grande Naine originated from in vitro propagative material and cultivated on a virgin soil”, Nematologia Brasileira, 28(1). 55-61. 2004.
 
[9]  Schmitt, C.J. Environmental Contaminants US Geological Survey, pp. 100. 2005.
 
[10]  International programme on chemical safety, Environmental health criteria 89- Fenvalerate. World Health Organization, Geneva, 1989.
 
[11]  Eisler, R., Fenvalerate hazards to fish, wildlife and invertebrates: A synoptic review contaminant hazard reviews. Report.24. 1992.
 
[12]  Mansour, F., “Effect of pesticides on spiders occurring on apple and citrus in Israel, Phytoparasitica, 15. 43-50. 1987.
 
[13]  Karstensen, K. H., Nguyen K.K., Le, B.T., Pham, H.V., Nguyen, D.T., Doan T.T., Nguyen, H.H., Tao, M.Q., Luong, D.H., and Doan, H.T, “Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns”, Environmental Science & Policy, 9 (6). 577-586.2006.
 
[14]  Okhawa, H., Kikuchi, R. and Miyamoto, J.S, “Bioaccumulation and biodegradation of the (S)-acid isomer of fenvalerate (Sumicidin) in an aquatic model ecosystem, Journal of pesticide science, 5. 11-12. 1980.
 
[15]  Tallur, P. N., Megadi, V. B., and Ninnekar, H. Z, “Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1”, Biodegradation, 19. 77-82. 2008.
 
[16]  Holt, J.G., Krieg, N.R., Sneath, P.H.A., Stanley, J.T., and Williams, S.T, Bergey’s Manual of Determinative Bacteriology,9th edition, Lippincott Williams and Wilkins Publications, 1994.
 
[17]  Eaton,A.D., Clesceri, L.S., and Greenberg, A.L, Standard Examination of Water and Waste water,19th Edition, pp 4.17. 1995.
 
[18]  Lanz, W.W, and Williams, P.P, “Characterization of Esterases Produced by a Ruminal Bacterium Identified as Butyrvibrio fibrisolvens”, Journal of Bacteriology, 113. 1170-1176. 1972.
 
[19]  Halden, R.U., Tepp, S.M., Halden, B.G. and Dwyer, D.F, “Degradation of 3-Phenoxybenzoic Acid in Soil by Pseudomonas pseudoalcaligenes POB310 (pPOB) and Two Modified Pseudomonas Strains”, Applied and Environmental Microbiology, 65.3354-3359. 1999.
 
[20]  Maloney, S.E., Maule, A. and Smith,A.R.W, “Microbial Transformation Of The Pyrethroid Pesticide Insecticides: Permethrin, Deltamethrin, Fastac, Fenvalerate and Fluvalinate”, Applied and Environmental Microbiology,54. 2874-2876. 1988.
 
[21]  Motoyama, N T., Suganuma and Maekoshi, Y. Biochemical and Physiologial Characteristics of Insecticide Resistance in Diamondback Moth, 411-418. 1987.
 
[22]  Rodriguez-Cruz, M.S., Jones, J.E., Bending, G.D, “Field-scale study of the variability in pesticide biodegradation with soil depth and its relationship with soil characteristics”, Soil Biology and Biochemistry, 38. 2910-2918. 2006.
 
[23]  Nishi,K., Huang, H., Kamita, S.G., Kim, I.H., Morisseau, C. and Hammock, B.D, “Characterization of Pyrethroid Hydrolysis by the Human Liver Carboxylesterases hCE-1 and hCE-2”, Archive of Biochemistry and Biophysics,445.115-123. 2006.