American Journal of Microbiological Research
ISSN (Print): 2328-4129 ISSN (Online): 2328-4137 Website: Editor-in-chief: Apply for this position
Open Access
Journal Browser
American Journal of Microbiological Research. 2020, 8(3), 103-109
DOI: 10.12691/ajmr-8-3-4
Open AccessArticle

The Impact of Secondary Metabolites Produced by Streptomyces on Uro-pathogens

Suhndh Ahmed Mohmmed Musa1,

1Department of Botany, Faculty of Science, University of Khartoum

Pub. Date: August 21, 2020

Cite this paper:
Suhndh Ahmed Mohmmed Musa. The Impact of Secondary Metabolites Produced by Streptomyces on Uro-pathogens. American Journal of Microbiological Research. 2020; 8(3):103-109. doi: 10.12691/ajmr-8-3-4


Soil streptomyces are known as a rich source to produce secondary metabolites. This study was conducted to examine the effect of the Streptomyces sp. extracts against the uro-pathogen isolates from urinary tract infections in pregnancy from Kassala state. Cultural, morphological and physiological characterization of 15 microorganisms isolates from four soil samples indicated that all isolates belonged to the Streptomyces genus. All Streptomyces isolates produced chitinase enzyme except isolate SU11. After 72 hours all of the isolates were produced L-asparaginase enzyme. Ethyl acetate extracts of Antimicrobial were used for secondary screening against uro-pathogen. The high activity has been observed against Gram-positive bacteria with a percentage of 73.3% when compared to gram-negative bacteria. Whilst 26.7% has a high activity against Gram-negative comparing with Gram-positive bacteria, and different activity was shown against candida spp.

Streptomyces Chitinase L-asparaginase Antimicrobial Uro-pathogen

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 6


[1]  Singer, R. S., Finch, R., Wegener, H. C., Bywater, R., Walters, J., and Lipsitch, M. (2003). Antibiotic resistance—the interplay between antibiotic use in animals and human beings. The Lancet infectious diseases, 3(1), 47-51.‏
[2]  Bevan, P., Ryder, H., and Shaw, I. (1995). Identifying small-molecule lead compounds: the screening approach to drug discovery. Trends in Biotechnology, 13(3), 115-121.‏
[3]  Mabrouk, M. I., and Saleh, N. M. (2014). Molecular identification and characterization of antimicrobial active actinomycetes strains from some Egyptian soils. DNA, 11, 12.‏
[4]  Chevrette, M. G., Carlson, C. M., Ortega, H. E., Thomas, C., Ananiev, G. E., Barns, K. J., ... and Grubbs, K. J. (2019). The antimicrobial potential of Streptomyces from insect microbiomes. Nature communications, 10(1), 1-11.‏
[5]  Inderiati, S., and Franco, C. M. (2008). Isolation and identification of endophytic actinomycetes and their antifungal activity. J Biotechnol Res Trop Reg, 1, 1-6.‏
[6]  Kumar, N., Singh, R. K., Mishra, S. K., Singh, A. K., & Pachouri, U. C. (2010). Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria. International Journal of Microbiology Research, 2(2), 12.‏
[7]  Mitsuiki, S., Sakai, M., Moriyama, Y., GOTO, M., and Furukawa, K. (2002). Purification and some properties of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Bioscience, biotechnology, and biochemistry, 66(1), 164-167.
[8]  Narayana, K. J., and Vijayalakshmi, M. (2009). Chitinase production by Streptomyces sp. ANU 6277. Brazilian Journal of Microbiology, 40(4), 725-733.‏
[9]  Todar, K. (2002). Antimicrobial agents used in treatment of infectious disease. Textbook of Bacteriology, University of Wisconsin-Madison, 1-11.‏
[10]  Kuti, J. L., Capitano, B., and Nicolau, D. P. (2002). Cost-effective approaches to the treatment of community-acquired pneumonia in the era of resistance. Pharmacoeconomics, 20(8), 513-528.
[11]  Verma, N., Kumar, K., Kaur, G., and Anand, S. (2007). L-asparaginase: a promising chemotherapeutic agent. Critical reviews in biotechnology, 27(1), 45-62.‏
[12]  Hendriksen, H. V., Kornbrust, B. A., Østergaard, P. R., and Stringer, M. A. (2009). Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. Journal of agricultural and food chemistry, 57(10), 4168-4176.‏
[13]  Basha, N. S., Rekha, R., Komala, M., and Ruby, S. (2009). Production of extracellular anti-leukaemic enzyme lasparaginase from marine actinomycetes by solidstate and submerged fermentation: Purification and characterisation. Tropical Journal of Pharmaceutical Research, 8(4).‏
[14]  Gupta, R., Saxena, R. K., Chaturvedi, P., and Virdi, J. S. (1995). Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. Journal of Applied Bacteriology, 78(4), 378-383.‏
[15]  Faramarzi, M. A., Fazeli, M., Yazdi, M. T., Adrangi, S., Al-Ahmadi, K. J., Tasharrofi, N., and Mohseni, F. A. (2009). Optimization of cultural conditions for production of chitinase by a soil isolate of Massilia timonae. Biotechnology, 8(1), 93-99.‏
[16]  Ordentlich, A., Elad, Y., and Chet, I. (1988). The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology, 78(1), 84-88.‏
[17]  Gohel, V., Singh, A., Vimal, M., Ashwini, P., and Chhatpar, H. S. (2006). Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, 5(2), 54-72.‏
[18]  Hamza, A. A., Ali, H. A., Clark, B. R., Murphy, C. D., and Elobaid, E. A. (2013). Isolation and characterisation of actinomycin D producing Streptomyces spp. from Sudanese soil. African journal of biotechnology, 12(19).‏
[19]  Waksman, S. A. (1961). The Actinomycetes. Vol. II. Classification, identification and descriptions of genera and species. The Actinomycetes. Vol. II. Classification, identification and descriptions of genera and species.‏
[20]  Shirling, E. T., and Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International journal of systematic bacteriology, 16(3), 313-340.‏
[21]  Locci, R. (1989). Streptomyces and related genera. Bergey's manual of systematic bacteriology, 4, 2451-2508.‏
[22]  Buchanan, R. E., and Gibbons, N. E. (1974). Bergey's Manual of Determinative Bacteriology (8th edn.) The Williams and Wilkins Co. Baltimore, MD, 1246.‏
[23]  Prescott, L. M., Harley, J. P., and Klein, D. A. (1993). Microbiology, Wm. C. Brown Communication. Inc., 2nd. Edition, USA, 912.‏
[24]  Embley, T. M., and Stackebrandt, E. (1994). The molecular phylogeny and systematics of the actinomycetes. Annual review of microbiology, 48(1), 257-289.‏
[25]  Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D., and Maniatis, T. (1995). Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers. The FASEB Journal, 9(10), 899-909.‏
[26]  Korn-Wendisch, F., and Kutzner, H. J. (1991). The family Streptomycetaceae. The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, Chap. 41.
[27]  Pridham, T. G., Anderson, P., Foley, C., Lindenfelser, L. A., Hesseltine, C. W., and Benedict, R. G. (1957). A selection of media for maintenance and taxonomic study of streptomycetes. A selection of media for maintenance and taxonomic study of streptomycetes.‏
[28]  Priya, C. S., Jagannathan, N., and Kalaichelvan, P. T. (2011). Production of chitinase by Streptomyces hygroscopicus VMCH2 by optimisation of cultural conditions. International Journal of Pharma and Bio Sciences, 2(2).‏‏
[29]  R. Gulati, R. K. Saxena, and R. Gupta, “A rapid plate assay for screening L-asparaginase producing micro-organisms,” Letters inAppliedMicrobiology,vol.24, no.1, pp.23-26,1997.
[30]  Kamat, N., and Velho-Pereira, S. (2012). Screening of actinobacteria for antimicrobial activities by a modified" Cross-Streak" method. Nature Precedings, 1-1.‏
[31]  Lertcanawanichakul, M., Pondet, K., and Kwantep, J. (2015). In vitro antimicrobial and antioxidant activities of bioactive compounds (secondary metabolites) extracted from Streptomyces lydicus A2. Journal of Applied Pharmaceutical Science, 5(2), 17-21.‏
[32]  Ismail, A., Tiong, N. W., Tan, S. T., and Azlan, A. (2009). Antioxidant properties of selected non-leafy vegetables. Nutrition & Food Science.‏,39: 176-180.
[33]  Alimuddin, A., Widada, J., Asmara, W., and Mustofa, M. (2011). Antifungal Production of a Strain of Actinomycete spp Isolated from the Rhizosphere of Cajuput Plant: Selection and detection of exhibiting activity against tested fungi. Indonesian Journal of Biotechnology, 16(1).
[34]  Williams, S. (1984). A taxonomic approach to selective isolation of streptomycetes from soil. Biological, biochemical, and biomedical aspects of actinomycetes., 553-561.‏
[35]  Arasu, M. V., Duraipandiyan, V., Agastian, P., and Ignacimuthu, S. (2008). Antimicrobial activity of Streptomyces spp. ERI-26 recovered from Western Ghats of Tamil Nadu. Journal de Mycologie Médicale, 18(3), 147-153.‏
[36]  Bakheit, S. E., and Saadabi, A. M. (2014). Antagonistic affects of Actinomycetes isolated from Tuti island farms (Central Sudan) against Fusarium oxysporum f. sp. vasinfectum a phytopathogenic fungus. International Journal of Advanced Research, 2(2), 114-120.‏
[37]  Taddei, A., Rodriguez, M. J., Márquez-Vilchez, E., and Castelli, C. (2006). Isolation and identification of Streptomyces spp. from Venezuelan soils: Morphological and biochemical studies. I. Microbiological Research, 161(3), 222-231.
[38]  Claessen, D., De Jong, W., Dijkhuizen, L., and Wösten, H. A. (2006). Regulation of Streptomyces development: reach for the sky!. Trends in microbiology, 14(7), 313-319.‏
[39]  Benedict, R. G., Pridham, T. G., Lindenfelser, L. A., Hall, H. H., and Jackson, R. W. (1955). Further studies in the evaluation of carbohydrate utilization tests as aids in the differentiation of species of Streptomyces. Applied microbiology, 3(1), 1.‏
[40]  Antonova-Nikolova, S., Tzekova, N.,and Yocheva, L. (2005). Taxonomy of Streptomyces sp. strain 3B. Journal of Culture Collections, 4(1), 36-42.
[41]  Urzı̀, C., and Realini, M. (1998). Colour changes of Notos calcareous sandstone as related to its colonisation by microorganisms. International biodeterioration & biodegradation, 42(1), 45-54.‏
[42]  Walsh, D. A., Papke, R. T., and Doolittle, W. F. (2005). Archaeal diversity along a soil salinity gradient prone to disturbance. Environmental Microbiology, 7(10), 1655-1666..‏‏
[43]  Antony-Babu, S., Stach, J. E., and Goodfellow, M. (2008). Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie Van Leeuwenhoek, 94(1),
[44]  Narayana, K. J., Peddikotla, P., Krishna, P. S. J., Yenamandra, V., and Muvva, V. (2009). Indole-3-acetic acid production by Streptomyces albidoflavus. J Biol Res, 11, 49-55.‏
[45]  Ding, L., Münch, J., Goerls, H., Maier, A., Fiebig, H. H., Lin, W. H., and Hertweck, C. (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic and medicinal chemistry letters, 20(22), 6685-6687.‏
[46]  Mostafa SA. Zentralbl Bakteriol Naturwiss. 1979; 134(5): 429-36.
[47]  Kolla J.P. Narayana; Muvva Vijayalakshmi Chitinase Production by Streptomyces sp. ANU 6277Braz. J. Microbiol. vol.40 no.4 São Paulo Oct./Dec. 2009.
[48]  Meriem, G., and Mahmoud, K. (2017). Optimization of chitinase production by a new Streptomyces griseorubens C9 isolate using response surface methodology. Annals of Microbiology, 67(2), 175-183.‏
[49]  Narayana, K. J. P., Kumar, K. G., and Vijayalakshmi, M. (2008). L-asparaginase production by Streptomyces albidoflavus. Indian Journal of Microbiology, 48(3), 331-336.
[50]  Amena, S., Vishalakshi, N., Prabhakar, M., Dayanand, A., and Lingappa, K. (2010). Production, purification and characterization of L-asparaginase from Streptomyces gulbargensis. Brazilian journal of Microbiology, 41(1), 173-178.‏
[51]  Quecine, M. C., Araujo, W. L., Marcon, J., Gai, C. S., Azevedo, J. L., and Pizzirani-Kleiner, A. A. (2008). Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Letters in Applied Microbiology, 47(6), 486-491.
[52]  Ghadin, N., Zin, N. M., Sabaratnam, V., Badya, N., Basri, D. F., Lian, H. H., and Sidik, N. M. (2008). Isolation and characterization of a novel endophytic Streptomyces SUK 06 with antimicrobial activity from Malaysian plant. Asian Journal of Plant Sciences.‏
[53]  Robinson, T., Singh, D., and Nigam, P. (2001). Solid-state fermentation: a promising microbial technology for secondary metabolite production. Applied microbiology and biotechnology, 55(3), 284-289.‏
[54]  Baniya, A.; Singh, S.; Singh, M.; Nepal, P.; Adhikari, M. Aryal, S. and Adhikari, A. (2019). Isolation and Screening of Antibiotics Producing Streptomyces spp from the Soil Collected around the Root of Alnus nepalensis from Godawari. Nepal Journal of Biotechnology. 6. 46-56.
[55]  Hassan, M. A., El-Naggar, M. Y., and Said, W. Y. (2001). Physiological factors affecting the production of an antimicrobial substance by Streptomyces violatus in batch cultures. Egyptian Journal of Biology, 3(1), 1-10.
[56]  Anansiriwattana, W., Tanasupawat, S., Amnuoypol, S., and Suwanborirux, K. (2006). Identification and antimicrobial activities of actinomycetes from soils in Samed Island, and geldanamycin from strain PC4-3. Thai J Pharm Sci, 30, 49-56.
[57]  Al-Hulu, S. M., Al-Charrakh, A. H., and Jarallah, E. M. (2011). Antibacterial activity of Streptomyces gelaticus isolated from Iraqi soils. Medical Journal of Babylon, 8(3), 404-411.
[58]  ‏Kekuda, P. Shobha K. Onkarappa, R.(2012) Studies on antioxidant and anthelmintic activity of two Streptomyces species isolated from Western Ghat soil of Agumbe, Karnataka. Journal of Pharmacy Research. 3(1): 26-29.
[59]  Rabah, F. L., Elshafei, A., Saker, M., Cheikh, B., & Hocine, H. (2007). Screening, isolation and characterization of a novel antimicrobial producing actinomycete, strain RAF10. Biotechnology, 6(4), 489-496
[60]  Oskay, M. (2009). Antifungal and antibacterial compounds from Streptomyces strains. African Journal of Biotechnology, 8(13).‏
[61]  Sunanda, K. K., Uma, K. D., and Apparao, A. (2010). Characterization of marine Streptomyces from Visakhapatnam coast. Drug Invention Today, 2(1).‏
[62]  Inbar, J. and Chet, I. (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacterium. Soil Biol Biochem 23, 973-978.